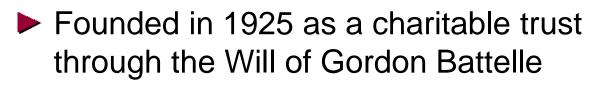
Distributed Combined Heat and Power in the APEC Region: Examples and Potential

Cary N. Bloyd, Ph.D. Senior Staff Scientist Electricity Infrastructure & Buildings Division Pacific Northwest National Laboratory Richland, Washington, USA

APERC ANNUAL CONFERENCE 2013 Keio Plaza Hotel Tokyo, Japan February 26-27, 2013

Presentation Overview

Introduction to the Pacific Northwest National Laboratory


Realizing the potential of combined heat and power

Examples of combined heat and power (CHP) across the APEC region

Smart grid as a driver for distributed combined heat and power

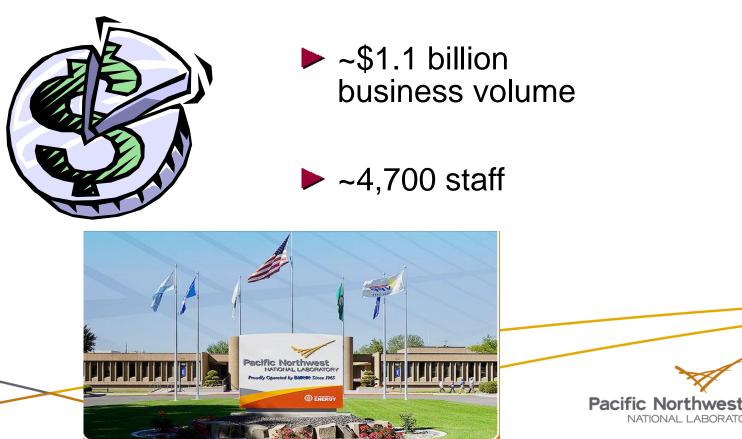
Pacific Northwest NATIONAL LABORATORY

PNNL is operated for DOE by Battelle

Ohio industrialist; believed research could make American industry more competitive

Core Purpose

Translate scientific discovery into innovative applications


NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Battelle headquarters Columbus, OH

PNNL's Mission & Business Facts

Mission: Perform basic and applied research in support of energy, environmental, and national security for our nation.

NATIONAL LABORATORY

Increase U.S. energy capacity and reduce dependence on imported oil

PNNL will provide science, technologies and leadership to:

Transitioning to a renewable, nuclear, and hydrogen energy base while reducing dependence on imported oil. . .

Energy Efficiency & Renewable Energy (EERE)

 Increase the efficiency of powering vehicles and buildings; and improve economic viability of biofuels

Clean Fossil Energy

Enable economically and environmentally sustainable "air and water" neutral hydrocarbon conversion, carbon capture and sequestration

Electric Infrastructure

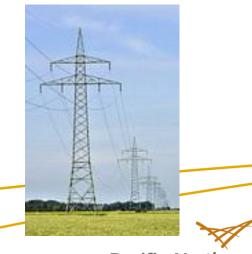
Improve grid reliability and productivity

Nuclear Energy

Enable expansion of nuclear energy through a viable closed nuclear fuel cycle

Pacific Northwes NATIONAL LABORATORY

Combined heat and power potential is derived from savings in electricity generation and transmission


Electric Power Generation

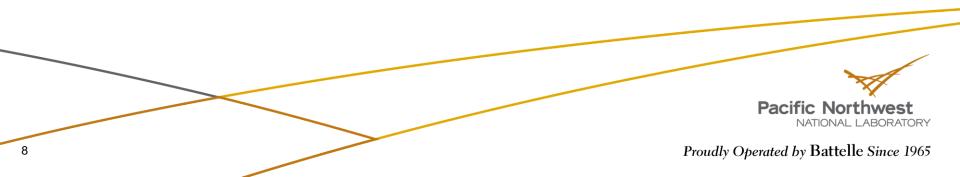
- Thermal power plants discard up to 70% of their energy input as waste heat
- Large power plants are usually located large distances from demand centers for their waste heat

Electric Power Transmission

- Energy is always lost in electric power transmission
- Transmission lines are expensive and becoming difficult to site

Pacific Northwest NATIONAL LABORATORY

Combined heat and power saving opportunities exist across all major end use sectors


- The industrial sector was the first to adopt CHP solutions
- The commercial sector utilizes CHP at the building level
- CHP options are available for the residential sector at both the building and appliance level

Pacific Northwest NATIONAL LABORATORY

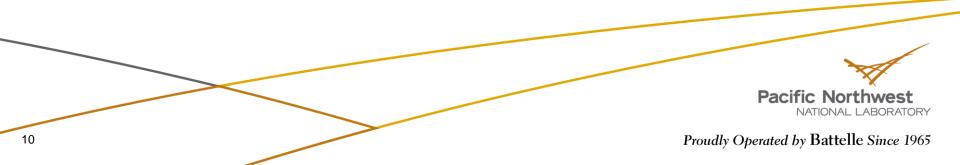
Combined head and power systems have multiple drivers

- Increased overall energy efficiency
- Reduction in overall operating expenses
- Increased reliability
- Increased energy security at both the local and national levels
- Emission reductions
- Mitigation of future carbon cost impacts

CHP Energy and Savings Potential*

Category	10 MW CHP	10 MW PV	10 MW Wind	Combined Cycle (10 MV Portion)
Annual Capacity Factor	85%	22%	34%	70%
Annual Electricity	74,446 MWh	19,272 MWh	29,784 MWh	61,320 MWh
Annual Useful Heat	103,417 MWht	None	None	None
Footprint Required	6,000 sq ft	1,740,000 sq ft	76,000 sq ft	N/A
Capital Cost	\$20 million	\$60.5 million	\$24.4 million	\$10 million
Annual Energy Savings	308,100 MMBtu	196,462 MMBtu	303,623 MMBtu	154,649 MMBtu
Annual CO ₂ Savings	42,751 Tons	17,887 Tons	27,644 Tons	28,172 Tons
Annual NOx Savings	59.4 Tons	16.2 Tons	24.9 Tons	39.3 Tons

*Combined Heat and Power: A Clean Energy Solution, August 2012, U.S. DOE, U.S. EPA


http://www1.eere.energy.gov/manufacturing/distributedenergy/

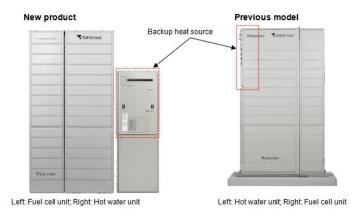
Pacific Northwest NATIONAL LABORATORY

CHP in the industrial sector

- China Steel Corporation (CSC) in Kaohsiung, Chinese Taipei
 - CSC is largest integrated steel maker in the Chinese Taipei
 - The CSC Kaohsiung plant provides 2/3 of its electricity through cogeneration and sells surplus steam to its industrial neighbors
 - Steam sales provided \$NT600 million in 2006

CHP in the commercial sector

- CHP plant at Royal North Shore Hospital, Sydney, Australia
 - 4 MW gas fired CHP unit
 - Heat exchanges to supply hospital's hot water needs
 - Includes 4 MW standby diesel power

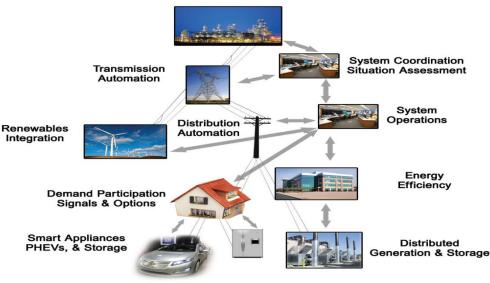


- Estimated CHP efficiency of 85%
- Operating 6500 hours/year (74% capacity factor)

CHP in the residential sector-Japan

- Fuel Cell hydrogen CHP demonstration in Japan (ENE-Farm)
 - The PEMFC units are sized at about 1 KW electric and 1 KW thermal capacity
 - More then 20,000 units have been installed
 - The capital cost is about ¥1 million
 - Up to 95% total efficiency (LHV)

Both technical and regulatory barriers remain to increased CHP deployment*


- Unclear Utility Value Proposition
- Limited CHP Supply Infrastructure
- Market and Non-Market Uncertainties
- End-User Awareness and Economic Decision-Making
- Local Permitting and Siting Issues

*Combined Heat and Power: A Clean Energy Solution, August 2012, U.S. DOE, U.S. EPA http://www1.eere.energy.gov/manufacturing/distributedenergy/

Pacific

The Smart Grid can be a key enabling technology for distributed combined heat and power across all end use sectors

- The smart grid enables CHP units to obtain the maximum value for their power generation
- The smart grid enables CHP units to provide power back to the grid during emergency situations
- The smart grid provides accountability
- The smart grid allows consumers to fully understand the impact of their energy choices and understand the value of distributed energy systems

Pacific Northwest NATIONAL LABORATORY

Thank you for your attention! Cary.Bloyd@pnnl.gov

