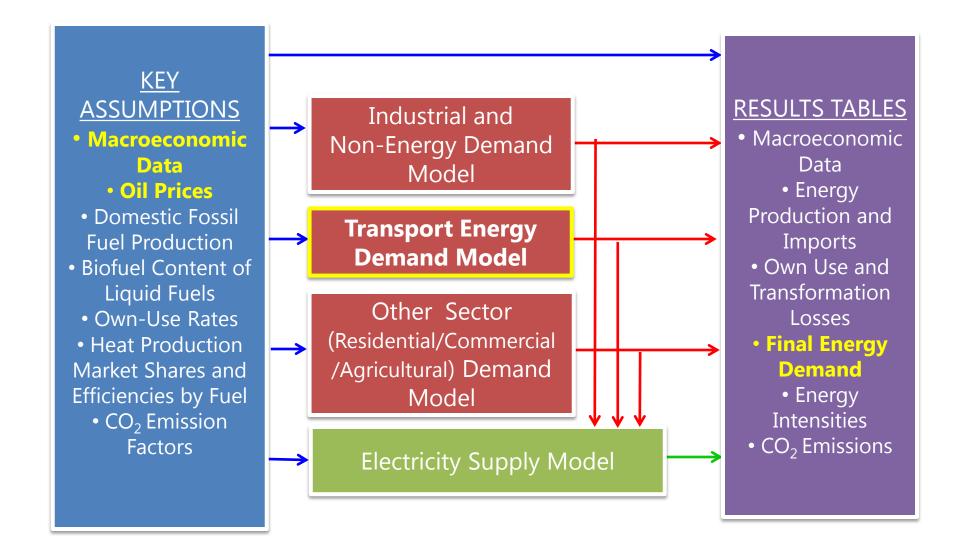
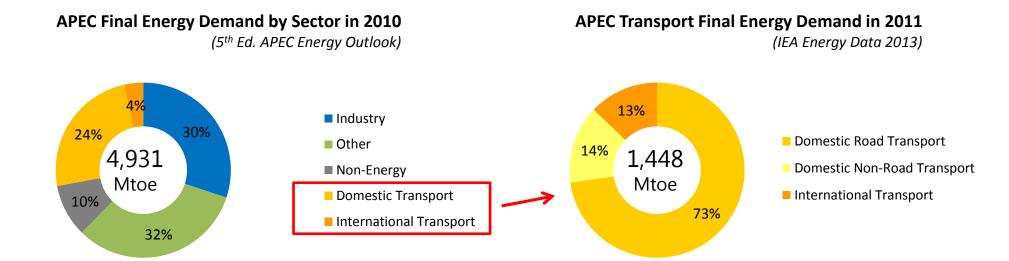


APERC Workshop
The 48th APEC Energy Working Group and Associated Meetings
Port Moresby, Papua New Guinea, 17 November 2014


2-2. Transportation Energy Demand Model

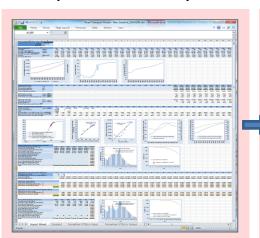
Atit Tippichai
Researcher
Asia Pacific Energy Research Centre (APERC)



- I. Overview of the transport sector energy demand models
- II. Preliminary results for BAU case
- III. Conclusion and Further Work

APERC's Outlook Model Framework

Transport Energy Demand in APEC Region



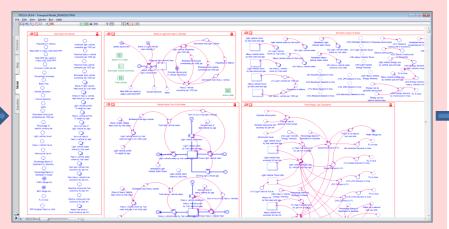
Transport Energy Demand Modelling Methods

	Transport mode	Vehicle class		gy Demand 011	Model	
			(Mtoe)	(Percent)		
Domestic (Road Transport)	-Road	-Light and Heavy vehicles-Motorcycles	1,053	73%	Vehicle Fleet Model	
Domestic (Non-Road Transport)	-Rail -Pipeline -Water -Air -Non-specific		37 53 33 80 6	3% 4% 2% 6% 0.4%	Econometric Model	
International (Non-Road Transport)	-Maritime -Aviation		109 78	8% 5%	Econometric Model	

APERC's Vehicle Fleet Model

(1980-2011)

❖ Macroeconomic data

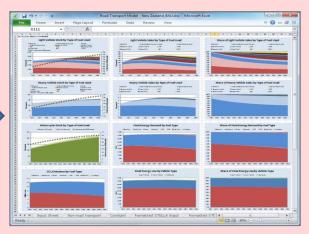

- ✓ GDP & Population
- ✓ Crude oil price
- ✓ Urbanisation

❖ Vehicle data

- ✓ Vehicle population
- ✓ Vehicle age distribution
- ✓ Vehicle sales
- ✓ Vehicle fuel economy
- ✓ Vehicle travel distance

Energy data

- ✓ Retail fuel prices
- ✓ Blend ratio of biofuel
- ✓ IEA road energy use

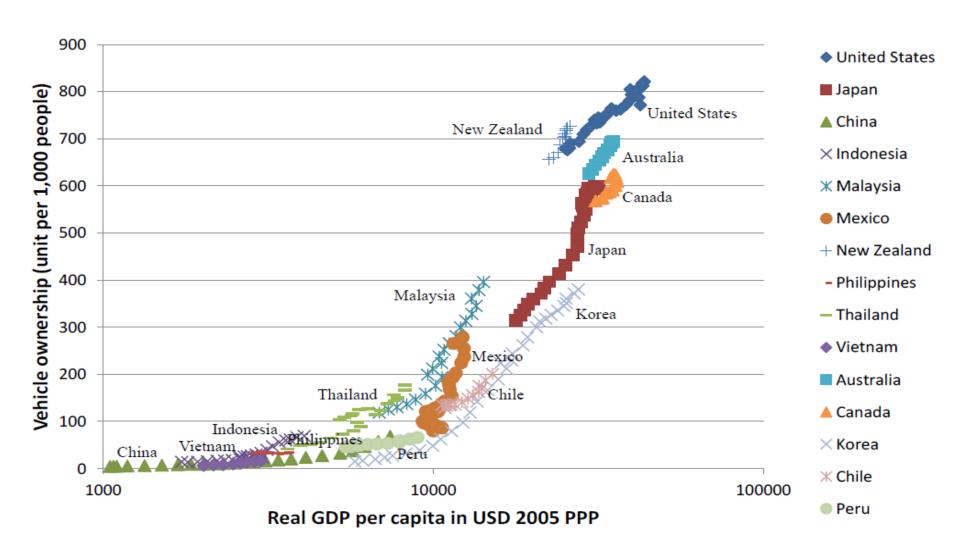


- Vehicle ownership model -> vehicle stock (GDP per capita, vehicle population, vehicle saturation)
- Vehicle stock & flow model -> vehicle sales and vehicle retirement (vehicle distribution by age, vehicle service life, survival rate)
- Vehicle consumer choice model -> share of vehicle technologies (fuel cost, purchase prices, driving range, refuelling

infrastructure, etc..)

<u>Vehicle travel model</u> -> travel distance
 (fuel cost, income, vehicle ownership, efficiency improvement, urban density)

Main Model (STELLA – System Dynamic Software) (2011-2040)


☐ Results

- > Vehicle ownership
- > Vehicle stock by technology & fuel
- > Vehicle sales by technology & fuel
- > Energy demand by vehicle class
- Energy demand by fuel type
- > Annual vehicle travel
- ➤ Average energy intensity
- > etc.

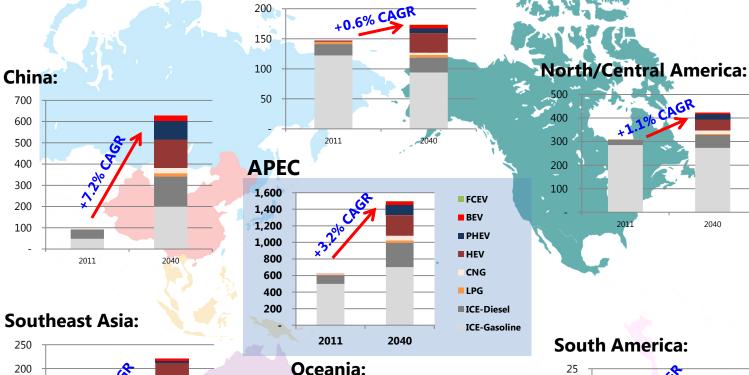
Output (Microsoft Excel)

Input (Microsoft Excel)

Historical vehicle ownership curves (1980-2011)

Expected Vehicle Ownership by APEC Economy

	Vehicle per 1,000 Population				% Satur	Saturation	
	2011	2020	2030	2040	2011	2040	
Canada	623	664	702	735	79.9	94.3	780
United States	817	827	839	852	92.8	96.8	880
Mexico	253	369	452	481	51.9	98.5	488
Peru	67	147	264	356	15.9	84.8	420
Chile	193	304	403	463	38.3	92.0	503
Russia	299	393	480	536	49.8	89.4	600
Korea	387	438	462	473	80.6	98.5	480
Japan	594	611	618	620	95.8	99.9	620
China	62	205	374	460	12.4	92.2	499
Chinese Taipei	313	323	327	328	94.7	99.3	330
Hong Kong	84	85	86	86	93.2	95.9	90
Singapore	159	164	167	168	93.3	98.8	170
Thailand	164	291	421	492	31.7	95.0	518
Malaysia	365	492	570	602	59.1	97.6	617
Indonesia	47	99	201	339	9.9	72.0	470
Philippines	72	139	264	371	16.9	86.7	428
Vietnam	17	36	90	205	3.6	44.6	460
Brunei Darussalam	537	536	537	538	99.4	99.6	540
Papua New Guinea	9	16	35	83	1.3	11.9	700
Australia	694	732	756	769	89.0	98.6	780
New Zealand	718	741	760	773	92.1	99.1	780
APEC	217	314	428	500	39.2	90.3	554


Future Vehicle Stock by APEC Economy

	Vehicle Stock (millions)			Compound Annual Growth Rates				
	2011	2020	2030	2040	2011-2020	2020-2030	2030-2040	2011-2040
Canada	21.41	24.69	27.98	30.80	1.6%	1.3%	1.0%	1.26%
United States	255.71	278.67	303.49	326.57	1.0%	0.9%	0.7%	0.85%
Mexico	29.10	46.48	61.21	68.01	5.3%	2.8%	1.1%	2.97%
Peru	1.97	4.78	9.39	13.41	10.4%	7.0%	3.6%	6.84%
Chile	3.33	5.63	7.88	9.26	6.0%	3.4%	1.6%	3.59%
Russia	42.70	55.44	65.46	70.39	2.9%	1.7%	0.7%	1.74%
Korea	18.71	21.80	23.26	23.33	1.7%	0.7%	0.0%	0.76%
Japan	75.16	76.28	74.34	70.85	0.2%	-0.3%	-0.5%	-0.20%
China	83.38	283.99	520.54	626.02	14.6%	6.2%	1.9%	7.20%
Chinese Taipei	7.26	7.63	7.70	7.44	0.6%	0.1%	-0.3%	0.09%
Hong Kong	0.60	0.66	0.73	0.77	1.2%	0.9%	0.6%	0.89%
Singapore	0.82	0.92	1.00	1.03	1.2%	0.8%	0.3%	0.78%
Thailand	11.40	20.95	30.86	35.91	7.0%	3.9%	1.5%	4.04%
Malaysia	10.53	16.24	21.24	24.58	4.9%	2.7%	1.5%	2.97%
Indonesia	11.28	25.93	56.19	98.27	9.7%	8.0%	5.7%	7.75%
Philippines	6.85	15.30	33.40	52.56	9.3%	8.1%	4.6%	7.28%
Vietnam	1.47	3.45	9.16	21.36	9.9%	10.3%	8.8%	9.67%
Brunei Darussalam	0.22	0.25	0.28	0.31	1.5%	1.2%	0.9%	1.17%
Papua New Guinea	0.06	0.13	0.36	0.99	8.4%	10.5%	10.6%	9.90%
Australia	15.70	18.48	21.00	22.91	1.8%	1.3%	0.9%	1.31%
New Zealand	3.17	3.58	3.96	4.24	1.3%	1.0%	0.7%	1.00%
APEC	600.8	911.3	1,279.4	1,509.0	4.7%	3.5%	1.7%	3.23%

Vehicle Stock by Technology by APEC Region

East Asia [except China]:

30

20

10

2011

2040

Vehicle stock will increase from 600 million in 2011 to 1,500 million in 2040; 2.5 times or 3.2% CAGR.

China's growth is the highest with 7.2% CAGR and will have 626 million vehicles in 2040, or 41.7% of the total APEC vehicle stock.

South America:

The share of electric-drive vehicles, HEV, PHEV, and EV in 2040 will be about 30% of the total APEC vehicle stock, and 40% of China's stock.

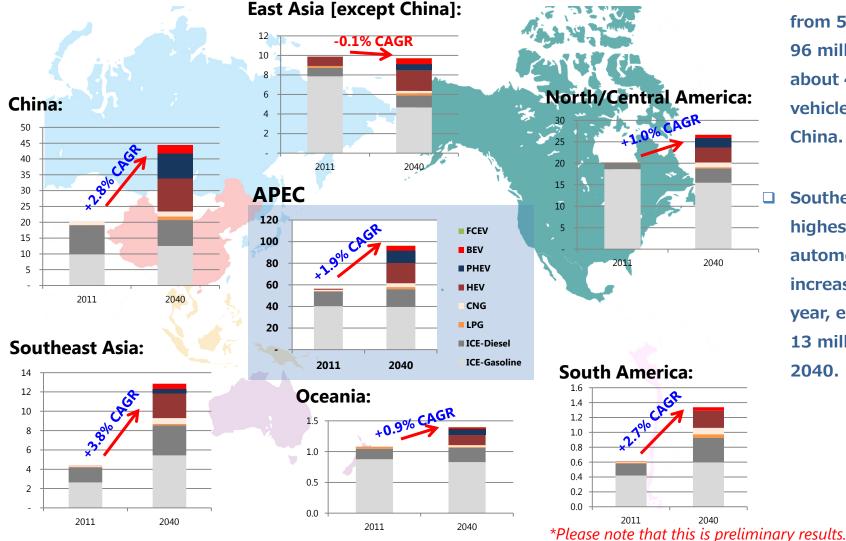
CAGR: Compound Annual Growth Rate

2040

2011

150

100


50

*Please note that this is preliminary results.

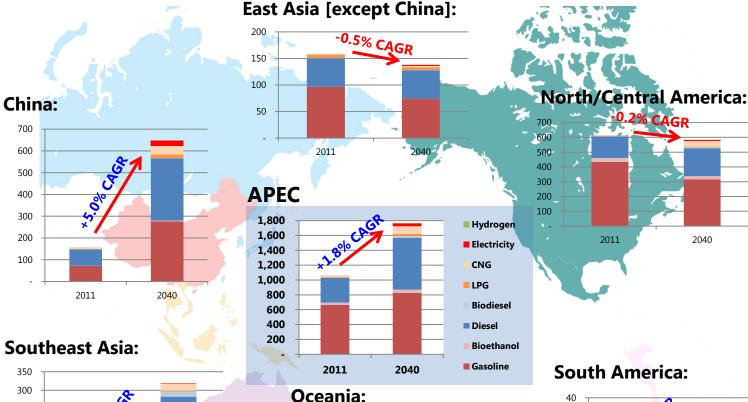
2040

Vehicle Sales by Technology by APEC Region

Vehicle sales will increase from 56 million in 2011 to 96 million in 2040, and about 45% of the APEC vehicle sales will be in China.

Southeast Asia has the highest growth automobile market, increasingly 3.8% per year, equivalent to about 13 million vehicles sales in 2040.

2040


Road Energy Demand by Fuel Type

+0.7% CAGR

2040

2011

Road Energy Demand in 2011 and 2040 [Mtoe]

30

20

10

250

200

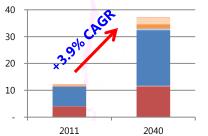
150

100

50

2011

2040

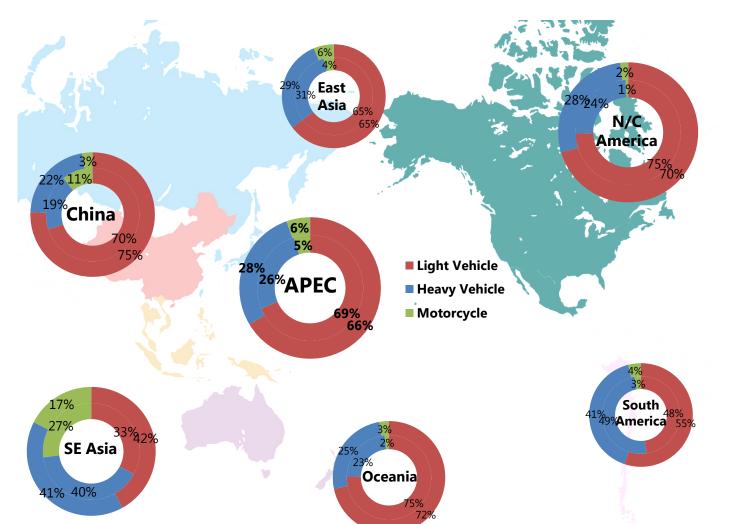

Energy demand for road transport will increase from 1,060 Mtoe in 2011 to 1,760 Mtoe in 2040, or 1.8% CAGR.

China has the highest growth at 5.0% per year, 650 Mtoe or 37% of the total energy demand in 2040.

Oil (gasoline and diesel) remains the primary fuel used in the transport sector at about 87% of the total energy demand in 2040.

South America:

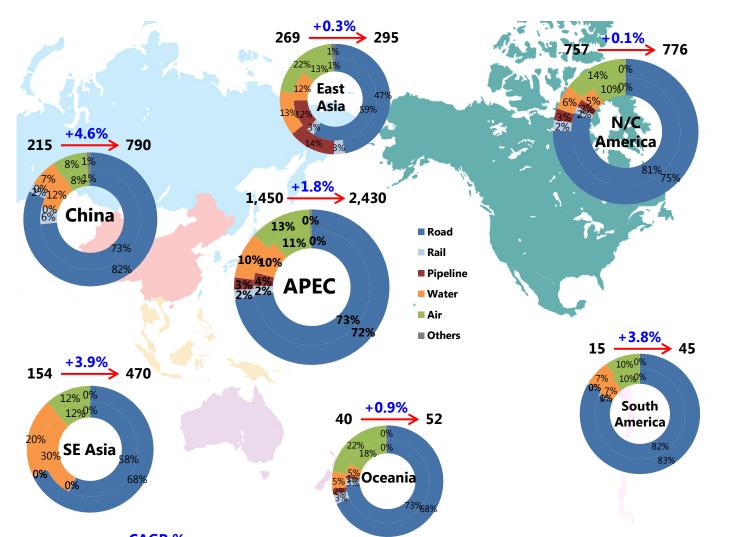
2011



*Please note that this is preliminary results.

2040

Share of Road Energy Demand by Vehicle Type

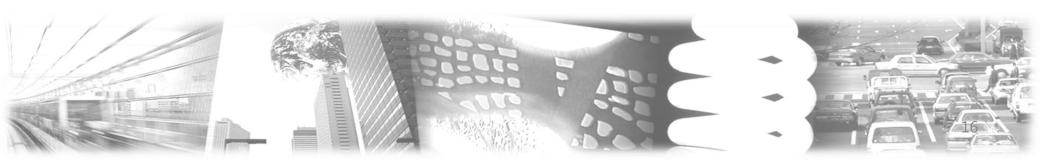

Share of Road Energy Demand by Vehicle Type in 2011 (inner) and 2040 (outer)

- □ Light vehicles remain the biggest share of road energy demand in AEC region, 66% in 2040.
- □ Heavy vehicles in SE Asia and South America have significant shares of energy demand, more than 40%.
- Motorcycles are a significant share of energy demand in SE Asia at 27% in 2011 and 17% in 2040.

Share of Transport Energy Demand by Mode

Share of Transport Energy Demand by Mode in 2011 (inner) and 2040 (outer)

Mtoe in 2011


- Road transport remains the biggest share of the total transport energy demand at more than 70%.
- □ Air and water transport
 are a significant share of
 energy demand in SE Asia,
 Oceania and East Asia,
 mostly due to
 international transport.
- Only small shares of railway and pipeline transport which are high energy efficiency modes.

Conclusion and Further Work

- The developed vehicle fleet model can estimate road transport energy demand by fuel type and can capture the changes in vehicle stock and sales by technology.
- Energy demand in the transport sector is still increasing with the high growth, particularly the road transport, therefore, the new vehicle fuel economy needs to improve and high energy efficiency vehicles should be deployed faster.
- Next step, APERC's vehicle fleet model will be used to evaluate the impact of improving fuel economy and promoting high energy efficiency vehicles in the APEC region.

Thank you for your kind attention.

Email: atit.tippichai@aperc.ieej.or.jp

