Renewables Integration and Smart Grid

Cary N. Bloyd, Ph.D.
Senior Staff Scientist
Electricity Infrastructure & Buildings Division
Pacific Northwest National Laboratory
Richland, Washington, USA

APERC Annual Conference 2015
Hotel New Otani
Tokyo, Japan
June 9-10, 2015

Presentation Overview


- Introduction to the Pacific Northwest National Laboratory
- ► The smart grid landscape in support of renewables
- Renewables integration and smart grid through case studies
- Concluding thoughts

PNNL is operated for DOE by Battelle

- ► Founded in 1925 as a charitable trust through the Will of Gordon Battelle
- Ohio industrialist; believed research could make American industry more competitive

Core Purpose

Translate scientific discovery into innovative applications

Battelle headquarters Columbus, OH

PNNL's Mission & Business Facts

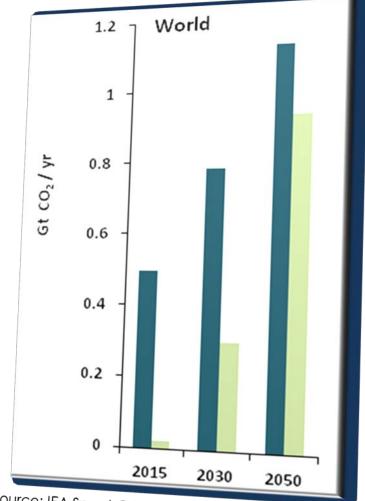
Mission: Perform basic and applied research in support of energy, environmental, and national security for our nation.

- ~\$1.1 billion business volume
- ► ~4,700 staff

Increase U.S. energy capacity and reduce dependence on imported oil

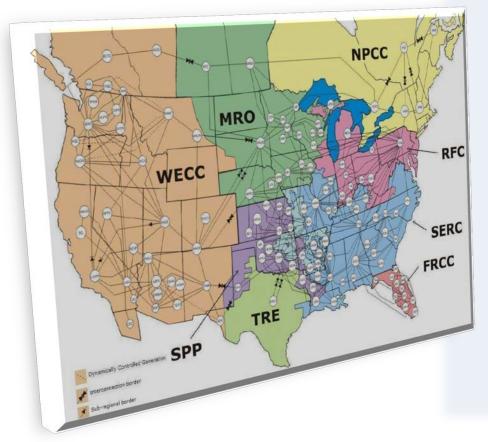
PNNL will provide science, technologies and leadership to:

Transitioning to a renewable, nuclear, and hydrogen energy base while reducing dependence on imported oil. . .


- Energy Efficiency & Renewable Energy (EERE)
 - Increase the efficiency of powering vehicles and buildings; and improve economic viability of biofuels
- Clean Fossil Energy
 - Enable economically and environmentally sustainable "air and water" neutral hydrocarbon conversion, carbon capture and sequestration
- Electric Infrastructure
 - Improve grid reliability and productivity
- Nuclear Energy
 - Enable expansion of nuclear energy through a viable closed nuclear fuel cycle

The Smart Grid Enables CO₂ Reduction on a Global Basis

Deployed globally, smart grids have the potential to help reduce global CO₂ emissions by over 2 gigatonnes per year by 2050


- <u>Direct Reductions</u>: Energy savings from peak load management,
 continuous commissioning of service sector loads, accelerated deployment of energy efficiency programs, reduced line losses, and direct feedback on energy usage
- <u>Enabled Reductions</u>: Greater integration of renewables and facilitation of EV and PHEV deployment

Source: IEA Smart Grids Roadmap Insights, 2011

The North American Electric Grid

U.S. Figures22% of world consumption

3,200 electric utility companies

17,000 power plants

800 gigawatt peak demand

165,000 miles of high-voltage lines

6 million miles of distribution lines

140 million meters

\$1 trillion in assets

\$350 billion annual revenues

Key Drivers toward the Future of the Electric Grid

2009

- 51% coal
- 19% nuclear
- 20% natural gas
- 3% oil
- 6% hydro
- 1% other renewable
- 3653 billion kWh
- Hybrids, No Plug-in **Electric Vehicles(PEVs)**
- Electrically-sensitive equipment (limited power quality considerations)
- 140 control areas
- Energy management systems (<1%)
- 180.000 miles of wires
- ~10 million Distributed Generation (DG) units
- Blackouts
- Aging infrastructure
- · Vulnerability of assets

Changing Supply Mix

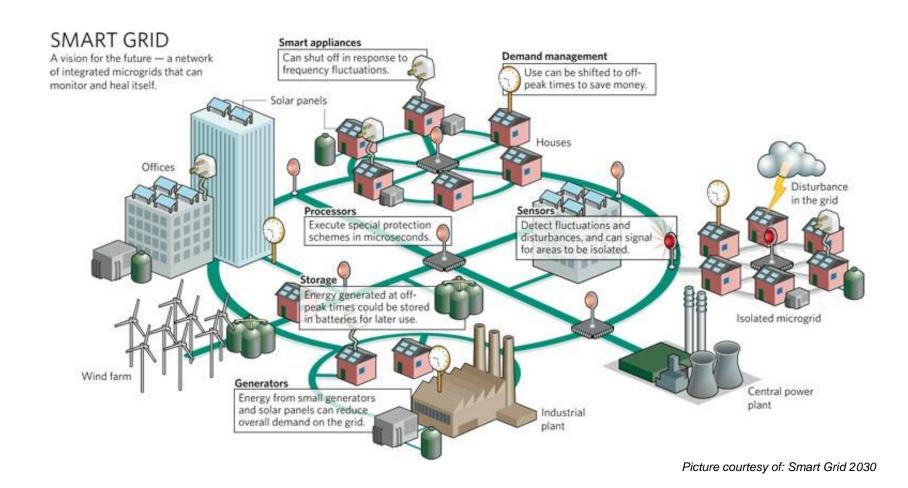
- Expanding transmission
- Increasing system flexibility needs

Demand Transformation

- Expanding digital economy
- Demand-side management
- Demand growth

Complexity of Grid

- Expanding footprint
- Overlay of markets
- Operating "closer to the edge"


Vulnerability of Energy Infrastructure

- Interdependencies of electric and energy systems
- Communications & controls

2035

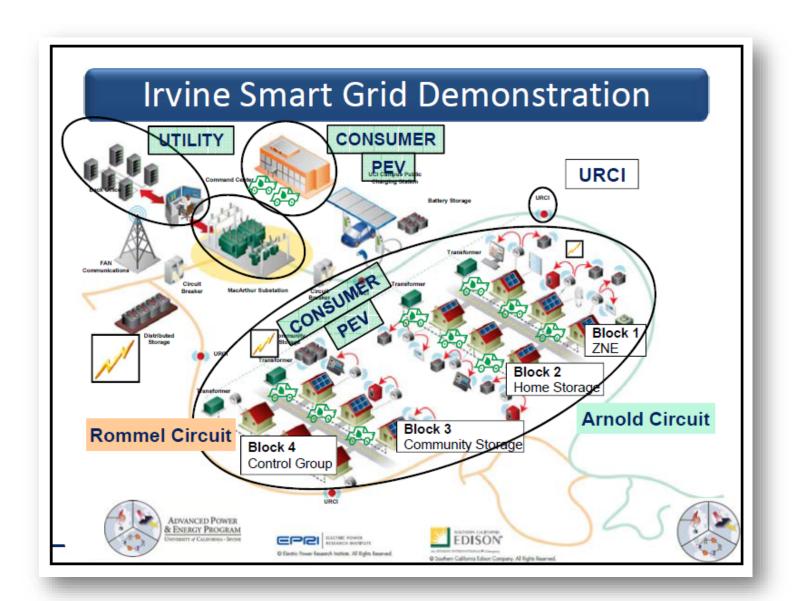
- More natural gas
 Same or less coal
- More renewables
 Same or less
 - nuclear
 - Same or less oil
- More than 5000 billion kWh
- Load curves increased peaking
- PEVs (could increase demand 25%)
- More electrically sensitive equipment (2.5x)
- Nodes within control area increase 5-10x
- Energy management systems (70%)
- Additional 30,000 miles needed
- ~ 22 million DG units (2.5x increase)
- Infrastructure protection
- Increased globalization
- Materials and resource limitations
- All-hazard risks will continue to increase

U.S. Vision: Grid Modernization

Renewable integration involves multiple technologies and implementation barriers*

- Technologies
 - Renewable energy
 - Distributed generation
 - Energy storage
 - Demand response
- Barriers
 - Technical
 - Economic
 - Regulatory
 - Institutional

*http://energy.gov/oe/technology-development/renewable-energy-integration


The IEA Grid Integration of Variables Renewables (GIVAR) program identified four flexible resources that support renewables integration*

- Flexible generation
- Grid infrastructure


- Electricity storage
- Demand-side integration

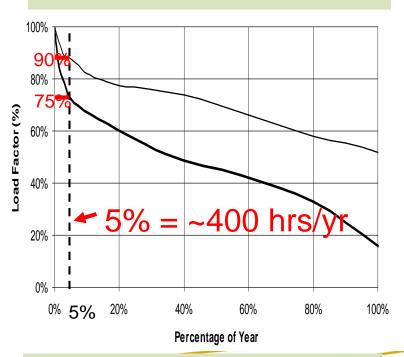
^{*}http://www.iea.org/topics/renewables/renewablesiea/renewablesintegrationgivar/

Southern California Edison Demonstration Including PEV Charging at Work

KCP&L Demonstration True End-to-End Smart Grid

@ KCP&L. All Rights Reserved.

The APEC Smart Grid Initiative looked specifically at renewable integration


- Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable- Energy Technologies" (EWG 01/2009S) (USA)
- Addressing Grid-interconnection Issues to Maximize the Utilization of New and Renewable Energy Resources (EWG 02/2009) (Japan)
- Promoting Stable and Consistent Renewable Energy Supply by Utilizing Suitable Energy Storage Systems (EWG 22 2012A) (China)
- Research on the Application of Physical Energy Storage Technology to Enhance the Deployment of Renewable Energy in an APEC Low Carbon Town (EWG 16 2012A) (China)

Renewable and Distributed Systems Integration (RDSI) at U.S. DOE

- 9 demonstration projects in 8 states to integrate use of Distributed Energy Resources (DER) to provide at least 15% peak demand reduction on distribution feeder or substation
- Projects are either microgrids or are developing technologies that will advance microgrids
- Systems must be capable of operating in both grid parallel and islanded modes
- \$55 million of DOE funds were awarded in 2008 and spent over five years (total value of awards will exceed \$100 million, including participant cost share)

Lower Peak Demand Reduces Infrastructure Investments

25% of distribution & 10% of generation assets (transmission is similar), worth 100s of billions of US dollars, are needed less than 400 hrs/year!

U.S. DOE RSDI Projects (1)*

- Chevron Energy Solutions—CERTS Microgrid Demo at the Santa Rita Jail - large-scale energy storage, photovoltaics (PV), fuel cell (California)
- SDG&E—Borrego Springs Microgrid demand response, storage, outage management system, automated distribution control, AMI (California)
- U of HI—Transmission Congestion Relief, Maui intermittency management system, demand response, wind turbines, dynamic simulations modeling (Hawaii)
- UNLV—"Hybrid" Homes Dramatic Residential Demand Reduction in the Desert Southwest - PV, advanced meters, in-home dashboard, automated demand response, storage (Nevada)
- ATK Space System—Powering a Defense Company with Renewables - Hydro-turbines, compressed air storage, solar thermal, wind turbines, waste heat recovery system (Utah)

*http://www.smartgrid.gov

U.S. DOE RSDI Projects (2)

- City of Fort Collins—Mixed Distributed Resources PV, bio-fuel Combined Heat and Power (CHP), thermal storage, fuel cell, microturbines, Plug-in Hybrid-Electric Vehicles (PHEV), demand response (Colorado)
- ► Illinois Institute of Technology—The Perfect Power Prototype advanced meters, intelligent system controller, gas fired generators, demand response controller, uninterruptable power supply, energy storage (Illinois)
- Allegheny Power—West Virginia Super Circuit Demonstrating the Reliability Benefits of Dynamic Feeder Reconfiguration - biodiesel combustion engine, microturbine, PV, energy storage, advanced wireless communications, dynamic feeder reconfiguration (West Virginia)
- Con Ed—Interoperability of Demand Response Resources demand response, PHEVs, fuel cell, combustion engines, intelligent islanding, dynamic reconfiguration, and fault isolation (New York)

ISGAN AWARD OF EXCELLENCE

 Annual international competition showcases global excellence, leadership and innovation in smart grids

2015 Theme:
Excellence in Smart Grids
for Renewable Energy
Integration

- Winners were selected by an international jury of smart grid experts
- Official Rules and other information are posted at <u>www.iea-isgan.org/award2015</u>

The ISGAN Award of Excellence competition is supported by

2015 ISGAN Award of Excellence Winner: GRID4EU – Large-Scale Demonstration of European Smart Grid Distribution Networks*

- Led by six European Distribution System Operators (DSOs)
 - Électricité Réseau Distribution France (ERDF)
 - Czech Republic, Italy, Spain, Germany, and Sweden
- With 27 partners
 - Utilities, manufacturers
 - Universities and research institutions
- Focus areas are renewable energy integration, EV development, grid automation, energy storage, energy efficiency and load reduction
- Examines how DSOs can dynamically manage electricity supply and demand and integrate large amounts of renewables

*http://www.iea-isgan.org/?c=395/397

Award of

2015

Excellence

ISGAN

Could advanced batteries be a game changer?

- Tesla Gigafactory 1
 - 2020 pack output of 50 GWh/yr
 - Cost of US\$5 billion
 - Reno, Nevada, USA

- US\$179 million for PowerWall
- US\$625 million for PowerPack
- Tesla Energy's goal? Changing the "energy infrastructure of the world" Batteries could change traditional grids to make micro-grids and smart-grids possible (Arstechnica)
- Can Tesla's Battery Hit \$1 Billion Faster Than the iPhone? (Bloomberg Business)

Renewable grid integration is on an upward trend

- Maximum renewable energy grid integration will always be location and resource dependent
- ► IEA believes up to 45% annual generation is possible without significantly increasing long run power system costs with favorable conditions*

^{*} The Power of Transformation-Wind, Sun and the Economics of Flexible Power systems http://www.iea.org/topics/renewables/renewablesiea/renewablesintegrationgivar/

Thank you for your attention! Cary.Bloyd@pnnl.gov

