

Building the pathway to cleaner coal

Benjamin Sporton Chief Executive

Fossil fuels remain an important part of the global energy mix

- Under the IEA's NPS global energy demand will increase 37% and fossil fuel contribution will reduce only from 81% to 74%
- Coal will reduce only slightly from 29% to 24% of the total, however grows in total tonnes

Source: IEA, WEO 2014

Coal is critical to the present and future global energy mix

Source: IEA, WEO 2014

20% of the world population has no access to modern energy services

- 1.3 billion people in the world who live without access to electricity
- 2.6 billion who rely on traditional fuels for cooking.

People without access to modern energy services by region

Source: World Energy Outlook 2011

Coal is a key energy resource in the ongoing global fight to address energy poverty.

- As the world's most abundant and affordable energy fuel, coal has a role to play in delivering universal energy access.
- China provides an excellent example of an electrification strategy based on coal, with a 400% increase in China's coal consumption and 660 million people lifted out of poverty since 1980s.

Additional on-grid electricity generation (Energy for All Case compared with the New Policies Scenario, 2030.

Source: World Energy Outlook 2011

New installed capacity post 2015 will require an additional 1.8Btpa coal

Asian share - 2000 (38%); 2015 (69%); 2040 (77%)

Source: WCA

India will grow electricity generation significantly

Source: IEA, WEO 2014, New Policies Scenario

Cleaner coal technologies have addressed environmental challenges

- Clean coal technologies, such as electrostatic precipitators, fabric filters, selective catalytic reduction systems, wet and dry scrubbers, sorbents and activated carbon injection can reduce the emissions of pollutants from coal combustion by 90% to 99.9%.
- In the USA the emissions of of NOx, SOx and PM were reduced by 82 to 96% since 1970, while coal consumption increased by 146%

Evolution of coal demand and emissions of pollutants in the USA since 1970

Coal-Based Power Generation
GDP per Capita (2005 \$)
NOx Emissions / kWh
SOx Emissions / kWh
PM10 Emissions / kWh

Efficiency improvements can significantly contribute to CO2 emission reductions

Average

kWh

- The most important near-term action to reduce CO2 emissions is to increase the efficiency of coal-fired power plants.
- 1% increase LHV efficiency = 2-3%points decrease in CO2 emissions.
- Moving the current average global efficiency rate of coalfired power plants from 33 to 40% by deploying more advanced technology could cut 2 gigatonnes of CO2 emissions (equivalent of India's annual CO2 emissions)

worldwide 30% EU 1,116g CO₂/kWh -21% 480g Coal/kWh State-of-the-art About 38% technology CO, reductio 881g CO₂/kWh -33% CO₂ emissions per 379g Coal/kWh Steam power plant 45% 700°C technology 743g CO₂/kWh -40% 320g Coal/kWh CCS technology About 50% But: 669g CO₂/kWh Efficiency loss Efficiency 288g Coal/kWh 7-12% points CO₂ emissions -90% Fuel consumption 2010 2020 Time

CO₂ reduction potential of coal-fired power plants by increased efficiency

Source: VGB PowerTech 2013

Comparative climate actions

Initiatives needed to cut 2 Gt of CO₂ emissions

- Run the EU ETS for 53 years
- Run the Kyoto Protocol 3 times
- Multiply the world's current solar power capacity by 195
- Increase the efficiency of all coal power plants from 33% to 40%

A global platform to drive HELE technology is needed

Advancing technological development through coordinating research efforts using a technology centre model and identifying and leveraging financial support.

Technology

Global Action

Define a model for best available technology and practice in high efficiency, low emission coal-fired power generation.

Implement the recommendations and actions of the IEA's 2012 Technology Roadmap for High-Efficiency, Low-Emissions Coal-Fired Power Generation with a view to maximising achievement of the milestones contained in that report.

> Promote knowledge and technology transfer to support development and deployment of more advanced technologies in developing countries.

National Action

Develop roadmaps and regulatory frameworks with governments to facilitate the deployment of high efficiency, low emission coal-fired power plants in preference to less efficient technologies with higher emissions.

Support the upgrading of existing coal-fired power plants to improved technologies to reduce emissions.

Support actions that promote better resource efficiency for coal (such as reuse rather than disposal of coal ash and increased efficiency along the coal value chain, including through improved coal handling, drying and washing)

Identifying and working with funding partners to ensure cost is no barrier to deployment of the most efficient technologies, including work with financial institutions (eg, development banks) and carbon market mechanisms (eg, the CDM).

WCA proposes the PACE concept to support HELE

A Global Platform for Accelerating Coal Efficiency

- International platform to help drive deployment of HELE technologies in developing and emerging economies
- Public private partnership
- Currently seeking partners to help build an initial alliance

The potential impact is significant in a global context

Emission reductions by policies / actions, bn tonnes CO₂ equivalent

Policy / Action	Cumulative emissions	Period	Annual emissions*
Montreal protocol	135.0bn	1989-2013	5.6bn
Hydrop ower worldwide	2.8bn	2010	2.8bn
Nuclear power worldwide	2.2bn	2010	22bn
In crease average global efficiency of coal-fired power plants to 40%			2bn
Chinaone-child policy	1.3bn	2005	13bn
Other renewables worldwide	600m	2010	600m
US vehicle emissions & fuele conomystandards*	6.0bn	2012-2025	460m
Brazil forest preservation	3.2bn	2005-2013	400m
In dia lan d-use change	177m	2007	177m
Clean Development Mechanism	1.5bn	2004-2014	150m
US building & appliances codes	3.0bn	2008-2030	136m
China S OE efficien cytargets	1.9bn	2005-2020	126m
Collapse of USSR	709m	1992-1998	118m
Global Environment Facility	2.3bn	1991-2014	100m
EU energy efficiency	230m	2008-2012	58m
US vehicle emissions & fuele conomystandards#	270m	2014-2018	54m
EU ren ewable s	117m	2008-2012	29m
US building codes (2013)	230m	2014-2030	10m
US appliances (2013)	158m	2014-2030	10m
Cleantechnology fund	1.7bn	project lifetime	na
EU vehi d e emission standards	140m	2020	na

*Annual emissions are cumulative emissions divided by the relevant period.

The estimate for the current emissions avoided under the Montreal protocol is eight billion tonnes of CO₂e.

The annual figure for the collapse of the USSR refers to the years 1992-1998 *Cars and light trucks *Heavy trucks

CCS is critical to global climate objectives

- CCS technology can reduce GHG emissions from coalfired power plants by up to 90%
- CCS is expected to deliver 14% of cumulative GHG emissions cuts through to 2050. It is therefore a key low-carbon technology
- The world's first large scale integrated CCS project capturing CO2 from a coalfired power plant – Sask Power's Boundary Dam – has just started full scale operation at the end of September 2014

Contributions of different technologies to annual emissions reductions

Source: IEA Energy Technology Perspectives 2014

CCS needs more public support

- Total annual value of renewables subsidies in 2011 at US\$88 billion, increasing to US\$240 billion in 2035, with a cumulative subsidy for renewable technologies through to 2035 estimated at US\$3,500 billion
- Between 2007 and 2012 US\$10.02 billion was spent (according to the IEA) on CCS projects, with US\$7.7 billion of that amount privately financed
- GCCSI estimates that the total global commitment to CCS is US\$20.7 billion, less than 3% of the funding already being committed towards renewables
- Policy parity of all low emission technologies is essential

Key WCA recommendations

The World Coal Association therefore calls for:

- Recognition of the CO2 mitigation potential of high-efficiency, low emission (HELE) coal-fueled power generation and the absolute necessity of international financial support for such projects.
- 2. Recognition of the imperative of carbon capture, utilisation and storage (CCUS) for meeting global climate objectives and support increased international action and financial support to deploy this technology.
- 3. CCUS technologies be given policy parity with other low emission energy technologies in international climate mechanisms and national policy settings.

www.worldcoal.org info@worldcoal.org