This presentation is supported by the Environment Research and Technology Development Fund (2-1702 and S-12-2) of the Environmental Restoration and Conservation Agency of Japan.

Net-zero emission pathways in Japan assessed by AIM/Enduse

Toshihiko Masui (National Institute for Environmental Studies) Ken Oshiro (Kyoto Univ.)

> Session 2: Net-zero emissions pathways APERC Annual Conference 2019 Grand Prince Hotel New Takanawa, Tokyo, Japan 15 May 2019

International Network of AIM (Asia-Pacific Integrated Model)

- Asian economies will update their mitigation target and roadmap to achieve the 2/1.5 degree target reflecting their issues to be solved and the resources to be endowed.
- Model can be a collaboration tool between science and decision making process. From the long-term viewpoint, each economy will need the capacities to develop model and scenarios by itself.
- AIM (Asia-Pacific Integrated Model) has supported Asian economies to develop the integrated assessment model and their long-term low carbon scenarios.
- In detail, please visit our website; http://www-iam.nies.go.jp/aim/index.html

In addition to AIM International Workshop, activities on capacity building in Asia are our important works.

Provision of AIM/CGE at Workshop on carbon neutral development in Bhutan on May 17 & 18, 2018

Training workshop on AIM/Enduse at SIIT, Thammasat Univ. from June 11 to 15, 2018 (10 Participants from 2 economies)

Training workshop on AIM/CGE at SIIT, Thammasat Univ. from June 26 to July 5, 2018 (7 participants from 3 economies)

Toward low carbon society, AIM team contributes to several international activities such as DDPP, CD-Links and other international model comparisons

nature climate change **PERSPECTIVE** https://doi.org/10.1038/s41558-019-0442-8

A pathway design framework for national low greenhouse gas emission development strategies

Henri Waisman[®]^{1*}, Chris Bataille[®]¹, Harald Winkler[®]², Frank Jotzo[®]³, Priyadarshi Shukla⁴, Michel Colombier¹, Daniel Buira⁵, Patrick Criqui⁶, Manfred Fischedick⁷, Mikiko Kainuma⁸, Emilio La Rovere⁹, Steve Pye¹⁰, George Safonov¹¹, Ucok Siagian¹², Fei Teng¹³, Maria-Rosa Virdis¹⁴, Jim Williams¹⁵, Soogil Young¹⁶, Gabrial Anandarajah[®]¹⁰, Rizaldi Boer¹⁷, Yongsun Cho¹⁸, Amandine Denis-Ryan¹⁹, Subash Dhar²⁰, Maria Gaeta²¹, Claudio Gesteira⁹, Ben Haley²², Jean-Charles Hourcade²³, Qiang Liu²⁴, Oleg Lugovoy[®]²⁵, Toshihiko Masui²⁶, Sandrine Mathy⁶, Ken Oshiro[®]²⁷, Ramiro Parrado²⁸, Minal Pathak⁴, Vladimir Potashnikov[®]²⁵, Sascha Samadi[®]⁷, David Sawyer²⁹, Thomas Spencer¹, Jordi Tovilla⁵ and Hilton Trollip²

The Paris Agreement introduces long-term strategies as an instrument to inform progressively more ambitious emission reduction objectives, while holding development goals paramount in the context of national circumstances. In the lead up to the twenty-first Conference of the Parties, the Deep Decarbonization Pathways Project developed mid-century low-emission pathways for 16 countries, based on an innovative pathway design framework. In this Perspective, we describe this framework and show how it can support the development of sectorally and technologically detailed, policy-relevant and country-driven strategies consistent with the Paris Agreement climate goal. We also discuss how this framework can be used to engage stakeholder input and buy-in; design implementation policy packages; reveal necessary technological, financial and institutional enabling conditions; and support global stocktaking and increasing of ambition.

Overview of AIM (Asia-Pacific Integrated Model)

Overview of AIM/Enduse

GHG emissions in Japan; trend and future targets

Source: GIO, NIES http://www-gio.nies.go.jp/aboutghg/nir/nir-j.html

Zero-emission pathway by 2050 in Japan

- According to the previous studies on global 1.5°C pathways, CO₂ emissions needs to be net-zero around 2050 globally (Rogelj et al. (2015)).
- Assessing national net-zero emission pathways by 2050 using AIM/Enduse [Japan], mainly focusing on:
 - difference of energy system transformation with the 2°C scenario (80% reduction by 2050)
 - the role of technologies, such as negative emission and nuclear
- BECCS is added to the technology options in AIM/Enduse[Japan]
- Oshiro, K., Kainuma, M., & Masui, T. (2018). Transformation of Japan's energy system to attain net-zero emission by 2050. Carbon management 9(5), https://doi.org/10.1080/17583004.2017.1396842,

Carbon Management

ISSN: 1758-3004 (Print) 1758-3012 (Online) Journal homepage: http://www.tandfonline.com/ioi/tcmt20

Transformation of Japan's energy system to attain net-zero emission by 2050

Net-zero emission pathways in Japan

- BECCS is required in zero-emission. 80% reduction is achievable without BECCS
- Phase-out of nuclear power would not compromise zero-emission
- If following the NDC, drastic emission reduction is required after 2030

CO₂ emissions, energy

Sectoral strategies to zero emission in Japan

- Power sector needs to be largely transformed, including net-negative.
- Difference between net-zero and 80% reduction is moderate in the buildings and industry sector.
- Buildings sector needs to be almost decarbonized even in 80% reduction.

10

Sectoral direct CO₂ emissions

Energy system transformation in power sector

- Dependence on VREs, such as solar and wind, as well as BECCS.
- Given phase-out of nuclear, challenges to integrate VREs are exacerbated.

Electricity generation

Energy system transformation in energy demand sectors

- Buildings sector: completely electrified by 2050 even in the 80% reduction
- Transport sector: switch to BEV and FCEV

Final energy demand by sources in the buildings and transportation sectors (b) Buildings

12

Compared with EU net-zero emission scenarios

	Electrification (ELEC)	Hydrogen (H2)	Power-to-X (P2X)	Energy Efficiency (EE)	Circular Economy (CIRC)	Combination (COMBO)	1.5°C Technical (1.5TECH)	1.5°C Sustainable Lifestyles (1.5LIFE)
Main Drivers	Electrification in all sectors	Hydrogen in industry, transport and buildings	E-fuels in industry, transport and buildings	Pursuing deep energy efficiency in all sectors	Increased resource and material efficiency	Cost-efficient combination of options from 2°C scenarios	Based on COMBO with more BECCS, CCS	Based on COMBO and CIRC with lifestyle changes
GHG target in 2050	-80% GHG (excluding sinks) ["well below 2°C" ambition]					-90% GHG (incl. sinks)	-100% GHG (incl.sinks) ["1.5°C" ambition]	
Major Common Assumptions	Deployment of sustainable, advanced biofuels Moderate circular economy measures Significant le					dination for infrastructure deployment nt only post-2050 in 2°C scenarios earning by doing for low carbon technologies nprovements in the efficiency of the transport system.		
Power sector	Power is nearly decarbonised by 2050. Strong penetration of RES facilitated by system optimization (demand-side response, storage, interconnections, role of prosumers). Nuclear still plays a role in the power sector and CCS deployment faces limitations.							
Industry	Electrification of processes	Use of H2 in targeted applications	Use of e-gas in targeted applications	Reducing energy demand via Energy Efficiency	Higherrecycling rates, material substitution, circular measures	Combination of most Cost-	COMBO but stronger	CIRC+COMBO but stronger
Buildings	Increased deployment of heat pumps	Deployment of H2 for heating	Deployment of e-gas for heating	Increased renovation rates and depth	Sustainable buildings	efficient options from "well below 2°C" scenarios with targeted application (excluding CIRC)		CIRC+COMBO but stronger
Transport sector	Faster electrification for all transport modes	H2 deployment for HDVs and some for LDVs	E-fuels deployment for all modes	Increased modal shift	Mobility as a service			 CIRC+COMBO but stronger Alternatives to air travel
Other Drivers		H2 in gas distribution grid	E-gas in gas distribution grid				Limited enhancement natural sink	 Dietary changes Enhancement natural sink

Source: Table 1: Overview of main scenario building blocks European Commission (2018) A Clean Planet for all; A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en.pdf

Compared with EU net-zero emission scenarios

Compared to results from AIM/Enduse [Japan], EU scenarios show

- emissions from transportation will be larger, and
- emissions from industry will be smaller.

Source: 7.7 GHG Pathways towards 2050 (GtCO2eq) European Commission (2018) A Clean Planet for all; A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_analysis_in_support_en.pdf

Toward net zero emission in 2050

- Among the regions/models, the roadmaps to achieve the net zero emission in 2050 are different. More detailed analysis will be needed using integrated assessment model.
- Rapid diffusion of technologies on energy efficiency improvement and renewable energy supply will be absolutely imperative.
- Not only technologies but also socio-economic condition and lifestyle will have to be changed drastically.
 Necessity of "Transition"
- Concrete narrative stories to realize vision and goal will be needed.
 Share of vision and goal with all stakeholders
- Integrated assessment model will check consistency and reality of narratives.
 - -> Identification of issues

