

Energy Security in Changing Energy Markets

Peter R Hartley

George A. Peterkin Professor of Economics Department of Economics and Rice Scholar in Energy Studies James A. Baker III Institute for Public Policy Rice University

September 11 2020

What is energy security?

- Linked to national security
 - Military forces are large consumers of energy
 - * Imported energy supplies can be embargoed or interdicted
- Energy is essential to a modern economy
 - Applies especially to electricity supply
- Cost of energy is important to households
 - Energy consumption also yields high consumer surplus
- Energy price increases have negative macroeconomic effects
 - Energy is an essential input to almost all production

Measures of energy security

- Diversity of primary energy sources
- Share of energy sources that have more volatile prices
- Share of imports in total supply of each energy source
 - Re-processed nuclear fuel analogous to domestic supply
- Geographic concentration of major supply locations
- Share of exports of one energy commodity coming from unstable/potentially hostile countries
- Sensitivity of the macro economy to energy price shocks
 - * Related to share of energy in GDP
- Energy density is relevant to many of these measures

center for **ENERGYSTUDIES** Rice University's Baker Institute

Non-fossil energy critical mineral inputs kg/MW

		05		
Mineral	Wind turbines	Solar PV	Nuclear	Major supplying countries
Aluminum		100		Smelter prod. China (56%) India (6%) Russia (6%) Canada (5%)
Boron	1			Turkey (39%) US (23%) Chile (14%) Kazakhstan (10%)
Cadmium		40	0.5	Ref. prod. China (33%) S. Korea (20%) Japan (8%)
Chromium	800		427	S. Africa (39%) Turkey (23%) Kazakhstan (9%)
Copper	2000	2000	60	Chile (28%) Peru (12%) China (8%) US (6%) Congo (6%)
Gallium		3		China (97%)
Indium		50	2	Ref. prod. China (39%) S.Korea (32%) Japan (10%) Canada (8%)
Lead		250	4	China (47%) Australia (10%) Peru (6%) US (6%)
Manganese	50			S. Africa (29%) US (17%) Gabon (13%) Ghana (7%)
Molybdenum	120		70	China (45%) Chile (19%) US (15%) Peru (10%)
Nickel	600		256	Indonesia (30%) Philippines (16%) Russia (10%) Australia (7%)
Niobium			2	Brazil (88%) Canada (10%)
Rare earths	188		0.5	China (63%) US (12%) Myanmar (10%) Australia (10%)
Selenium		40		Ref. prod. China (33%) Japan (28%) Germany (11%)
Silicon		15		China (64%) Russia (9%) Norway (5%) US (5%)
Silver		12	8	Mexico (23%) Peru (14%) China (13%) Russia (8%)
Tellurium		50		Ref. prod. China (62%) Japan (12%) Russia (9%) Sweden (9%)
Tin		450	5	China (27%) Indonesia (26%) Myanmar (17%) Peru (6%)
Titanium			1.5	China (28%) S. Africa (12%) Australia (11%) Canada (9%)
Tungsten			5	China (82%) Vietnam (6%) Mongolia (2%)
Vanadium			0.5	China (55%) Russia (25%) S. Africa (11%) Brazil (10%)
Zinc	5200	30		China (33%) Peru (12%) Australia (7%) India (6%) US (6%)
Zirconium/Hafnium			32	Australia (39%) S. Africa (26%) US (7%)

Some issues related to the table

- Precise inputs depend on details of the technologies used
- Many of these minerals are co-produced with other commodities the main output
- Recycling could reduce geographic concentration of supply
- Wind and nuclear also require substantial steel and cement
- * The above inputs relate to generation *capacity*
 - Nuclear also has fuel inputs, although minor relative to fossil fuels
 - * Wind and solar capacity factors are low relative to nuclear
 - * Wind and solar plant life spans are also much shorter
 - Constraining capacity construction is less serious than constraining energy production

Three key characteristics of wind and solar

- Non-dispatchability
 - * The *value* of the produced electricity depends on demand whereas the supply from wind and solar depends on exogenous weather
 - * Often the correlation with demand is *negative*
 - Without *reservoir-based* hydroelectricity, storage is expensive
 - Backup capacity from natural gas turbines is less reliable/capable
 - * Extra generating capacity can reduce capacity factors
- Intermittency
 - Frequency, voltage, reactive power must always be controlled
 - Rapid ramp-up capacity costs more than intermediate or base load
- Location of utility-scale facilities is often remote from the load
 - Long transmission links used at low capacity factors are expensive and more vulnerable to disruption

Average price effects of wind and solar

- * General experience: Higher wind and solar generation has been associated with higher average retail electricity prices
 - * Since these are zero marginal cost suppliers that might seem surprising
 - Indeed, subsides and mandates that apply to *production* appear to have resulted in occasional negative wholesale prices
- Some explanations for the paradox:
 - Costs of subsidies, mandates, and transmission expansions are covered by levies on electricity consumers
 - * Increased need for backup that then is not used at high capacity factors
 - Extra generation in low demand periods disadvantages baseload generators
 - * Likewise, wind and solar favor open cycle natural gas plants relative to combined cycle plants, but the former haver higher marginal cost
 - Covering fixed costs via volumetric charges encourages inefficient investments in rooftop PV, raising costs for those "left behind"

Larger electricity price fluctuations

- When renewable capacity is the marginal supplier, wholesale prices can be zero or negative as already noted
- At other times, prices are determined by the *net* load on the thermal system
 - Net load = total load exogenous supply from wind and solar
- High variance exogenous output from wind and solar then leads to more variable net load on the thermal system
 - * The result is much higher price variability

Transitioning other energy uses to electricity

- * In 2018, the electricity sector:
 - Globally: consumed around 27.1% of primary energy and supplied around 23.7% of final energy consumption
 - OECD: consumed around 28.4% of primary energy and supplied around 26.5% of final energy consumption
- Other major uses were transportation, industry and agriculture, space heating and water heating
- Electricity generation typically relies on more primary energy sources than these other end-use sectors
- But transitioning these other uses to electricity would likely decrease the overall diversity of primary energy sources
- The electricity network may also be more vulnerable to physical and cyber attack than distributed physical supply points

Links back to dimensions of energy security

- National security:
 - * Reliance upon supply of critical minerals, but the energy *source* is domestic
 - Vulnerability of the electricity supply network
- Maintaining a physical supply:
 - Increased risk of blackouts in a less stable electricity supply system
 - Possibly less diverse source of primary energy inputs
- Cost of energy:
 - Effects of renewables with backup/storage on average electricity prices
- Economic instability from energy price changes:
 - Increased variability of electricity prices
- Final comment:
 - * Energy security is not the only issue we care about

