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Topics to cover:

® Could hydrogen play a significant role in a decarbonized US in the
future?

® Would the US be a potential importer or exporter?

® What are the key barriers (policy, technology, economic, social, etc)?

Disclaimer:

Any cost information is approximate and derived from open literature and data. Do not
take any observations as investment advice.



1 Petawatt 1000 Terra watts
Global Energy Demand 1 Terra watt 1000 Gigawatts
1 Gigawatt 1000 Megawatt
1 Megawatt 1000 Kilowatt (kW)
Global direct primary energy consumption

Direct primary energy consumption does not take account of inefficiencies in fossil fuel production.
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*1520’s Discovery Gemini 5: 1965
*1660’s Boyle’s law PV / acid-metals ' |
*1780’s Lavoisier “Hydro” “Gene” T ey

*1780’s Hydrogen Balloon flight “La Charliere” 5 ‘Qﬂewﬁ
*1780’s Iron —steam process
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Alkaline Fuel Cell (AFC)

*1789: Water electrolysis
*1801: Fuel cell (Humphry Davy)

*1806: Internal combustion engine
*1874: Jules Verne “Mysterious Island”
*1884: Airship La France

* 1901: hydrogenation of unsaturated fats

. e C o Es www.NASA.gov Geminis el cel
*1910: Haber process (ammonia)
-1923: Synthetic methanol (Leuna) VAR, CNN.com./INSIDE PoLITICS
to set the foundation for DOE fuel cell programs SEARCH @Theweb ()chN.com | W scarch |

*1937: Hindenburg fire
*1943: Rocket fuel
*1951: Salt dome storage
*1957: Jet engine

*1960: Forklift

Bush touts benefits of hydrogen fuel

Cites risk in reliance on 'foreign sources' of oil
Thursday, February 8, 2003 Posted: 4:28 PM EST (2138 GMT)

WASHINGTON (CNN) -- The United [ President Bush vows to
States can change its dependence work with Congress to
on foreign oil and "make a

tremendous difference” in the develop ng;?,%\eg E;gl
world and the envirenment, ¢
President Bush said Thursday as

he announced details of a $1.2

billion initiative to make hydrogen

fuel petitive for powering

and ing electricity.
*1965: NASA Project Gemini
“ Iy Lab researchers taught scientists around the world how to fabricate e

° 1 9 66 G enera I M otors E I ectrovan fuel cell electrodes. GM relocated to Los Alamos. Hyirogen foa el reprocentang afthe  CEY SAETHS E?‘:MLMS
most i i @EENFRINT THIS (&% MOST POPULAR
of ourera.”

*1970’s: DOE Fuel Cell R&D

«2000: Ballard commercial fuel cell https://en.wikipedia.org/wiki/The Mysterious Island (1875);

Satyapal 2017: https://www.energy.gov/sites/prod/files/2017/03/f34/fcto-energy-talks-2017-satyapal.pdf
https://en.wikipedia.org/wiki/Timeline of hydrogen technologies

*2003: George Bush “Hydrogen Economy”

*2010: Shell forecourt Aqueous Phase reforming


http://www.fchea.org/fuelcells
https://en.wikipedia.org/wiki/The_Mysterious_Island
https://www.energy.gov/sites/prod/files/2017/03/f34/fcto-energy-talks-2017-satyapal.pdf
https://en.wikipedia.org/wiki/Timeline_of_hydrogen_technologies

Hydrogen & Fuel Cells U.S.

December 2020 U.S.

Stationary Power

N300

More than 35,000 forklifts

Over 20 million refuelings

Forklifts
S—
* 10 million metric

Fuel Cell Buses | j 7 ouhs tons produced

annually

* More than 1,600
miles of H
pipeline

el | o ¥ i =\
v — o
{ Y A 3
| \ s ol : 3 2
. \ {o " ol * World’s largest
— ' ko g H, storage
| y Y= {
o | " | s ” > £ )

H, Retail Stations cavern

"o= 4y >8,800 -ii,f&% L e

Fuel Cell Cars

-

Satyapal: www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office




Energy vectors to end-use customers
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Shell Scenarios 2021
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Stakeholder Market Forces
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Percent change in common pollutants since
Jan.20in the Bay Area
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**Rebecca Elliott and Bradley Olson, Sept. 22, 2019 WS)

L

SCOPE-3 Emissions:

Pandemic panorama: Skies were clear above San Francisco, on
March 25, about a week after California’s stay-at-home order
took effect. PHOTO: DAVID PAUL MORRIS/BLOOMBERG NEWS

“greenhouse-gas emissions from the oil o
byproducts they sell, such as gasoline. These
releases constitute roughly 88% of major oil- 125
: : an. 20 Feb 20 Coronavirus Offers a Clear View of What Causes Air Pollution: Jim
and-gas companies’ greenhouse-gas footprint
g P g g P ! Carlton, WSJ May 3, 2020

according to estimates from Redburn, a s With factories and vehicles idle, nitrogen dioxide levels hit lows not
London-based research firm”* seen since the early 20th century; ‘We didn’t know...how
significantly it could drop’
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Hydrogen as Energy Vector
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Hydrogen Council: Path to Hydrogen Competitiveness (2019) Copyright of Shell International B.V.



Hydrogen: .
US Opportunities ARCHETYPE DOMESTIC SUPPLY CHAIN
U e N

* Green / clean H, from West TX renewable + SE TX
(Houston GC) waste heat
m SMR/ Methane pyrolysis / water electrolysis

* H, heavy duty trucking, industry

* Commercial ride-share (Uber fleet)?

 City lift trucks / buses?

* H,Rail transit to US States with clean energy
incentives; H, + NH; pipelines

u LH2 Or NH3 & 2 . “ Electric Transmission Line £345kV)
* Leveraged demo hub Clean Hydrogen m ok
H, at Scale Energy System I\/!anufacturing Cost <2 USD/kg
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Competitive Outlets for Electrons: Use or Store
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Combustion Engine (Hybrid) Vehicle

Back to e- only in limited
circumstances

Molecular energy carriers have poorer cycle efficiency than electrochemical energy storage (Battery). The value of

transport as Dense Energy Carrier plus Storage must be considered in evaluating options!
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LH, & Ammonia First Choice
Hydrogen Energy Carriers

Cost of synthesis

— Economic & Society

optimum unknown
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Hydrogen vs Power to Liquids / Synthetic Natural Gas
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* W. Warnecke,et al., The Route to Sustainable Fuels for Zero Emissions Mobility, 39t International Vienna Motor
Symposium, 2018.
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Exhibit 2
Hydrogen demand potential across sectors - 2030 and 2050 vision
Million metric tons per year

Additional upside from other uses:!
= Synthetic jet fuel
= Ammonia as fuel for shipping

63

2 New feedstock
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http://www.fchea.org/us-hydrogen-study
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An Image of a Hydrogen Powered Society
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Power density and storage Grid storage
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electrons.

e Cannot produce H, this cheaply.

* Hydrogen must provide “service” in
energy transport or storage to be valuable.

Vaclav Smil, Power Density: A Key to Understanding Energy Sources
and Uses, MIT Press 2015; General Energetics Energy in the
Biosphere and Civilization. John Wiley, New York,(1991)




Renewable PPA vs. Natural Gas

Natural Gas

Natural gas prices

Matural gas prices, measured in current US dollars per million MBtu.
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BNEF 2020b. “Scale-up of Solar and Wind Puts Existing Coal, Gas at Risk.”
BloombergNEF (blog). April 28, 2020. https:// about.bnef.com/blog/scale-up-of-
solar-and-wind-puts existing-coal-gas-at-risk/.
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Hydrogen costs: Blue vs Green &
Infrastructure vs. BEV
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a Low-cost solar and wind resources start to achieve
fossil fuel parity within the next five years
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==0 == Average PV Average Wind Best case PV —=&— Best case Wind
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Mote: Remaining CO, emissions are from fossil fuel hydrogen production with CCS.
Electrolyser costs: 770 USD/kW (2020), 540 USD/kW (2030), 435 USD/kW (2040) and 370 USD/kW (2050).

CO, prices: USD 50 per tonne (2030), USD 100 per tonne (2040) and USD 200 per tonne (2050).

IRENA (2019), Hydrogen: A renewable energy perspective, International
Renewable Energy Agency, Abu Dhabi
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Figure 0-2:  Comparison of the cumulative investment of supply infrastructures.
H2 Mobility Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric
Charging of Vehicles, Martin Robinius, Jochen Linf3en, Thomas Grube, Markus Reuf3, Peter
Stenzel, Konstantinos Syranidis, Patrick Kuckertz and Detlef Stolten, Energie & Umwelt / Energy
& Environment Band / Volume 408 ISBN 978-3-95806-295-5: Forschungszentrum Jiilich
Research Centre and the H2 Mobility

1H 2021 renewable LCOH, forecast

LCOH, from renewable electricity
2030, alkaline electrolysis

By 2030, most modeled markets could produce renewable H, at well under $2/kg when using alkaline electrolyzers, assuming scale-up continues.

»
s 4
Legend
LCOH, ($/kg, real 2020)
0.40-0.59 N
0.60-0.79 e
2.00-2.19
2.20-2.39
240-2.59
Source: BloombergNEF. Assumes our optimistic alkaline electrolyzer cost scenario published in Hydrogen: The of From (web | terminal)

We selected the renewable electricity source that provides the lowest LCOH, for each country.

https://insideevs.com/photo/5735195/green-hydrogen-will-be-cheaper-than-blue-hydrogen-by-2050-says-bnef/




Hydrogen Dispensed Cost
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* Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten
Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov_National Renewable Energy Laboratory
. Laffen, T.A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A10-60528, March 2013



Viability of Hydrogen Economy?

Price paid for energy services Total cost of ownership SUV

http://www.fchea.org/us-hydrogen-study (2020)

Figure 9: Total cost of ownership of SUVs in the U.S., 2030

Exhibit 38

SUV TCO analysis $imile
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o | S \ Weak Policy Strong Policy
S i \CE® Source: BloombergNEF. Note: FCEV - fuel cell electric vehicle,
j ' ; BEV - battery electric vehicle, ICE - internal combustion engine.
0.38 : (CE 0.38 E
i\ FCEV - g FCEV
0w 8 6 4 2 0 8 6 4 2 https://data.bloomberglp.c
Lk Ry om/professional/sites/24/B

NEF-Hydrogen-Economy-
Outlook-Key-Messages-30-
Mar-2020.pdf

IEA (2019). https://www.iea.org/reports/the-future-of-hydrogen
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Figure 55. Parameters contrast of different drayage trucks

Kenworth 1680 = * Prototype launch: 2018.02
p’ jp, i Figure 59. TCO break down (USD/100km)
* Purpose: proof of concept
* Drivetrain capacity: 420 kW and 1,850 pound-feet (2,507 Nm) torque
. Il system: kW 25':'_0':' 1
Kenworth T680 Fuel cell system: 85 kw .
* Hydrogen tank storage capacity: 30 kg 210.03
* Battery capacity: 100 kwh 200.00 4 5.51
* Gross combined weight capacity: ~36.3 metric tons ' 8.27 154.95
* Driving distance: ~209km 150.00 2333 ) 16.38
51.76 :F'-E‘? 109.45
100.00 - 35 2.64
72.00 17.8 11.8
Toyota Beta * Prototype launch: 2018.07 (for deployment in Q4 2019) 51.76 51.76
* Purpose: proof of commercial viability 50.00 - 2897 31 '1 .
* Drivetrain capacity: 670-plus horsepower (500 kW) and 1,325 pound-feet 4313 3816 -
{1,796 Nm) of torque 0.00 . . 215 .
Toyota Beta * Fuel ce?F sys;em: 2x Mirai fuél s;v'stferr 1 each rated at 114 kw 2 FCEV BEWY CEV
* Fuel cell tank storage capacity: 60kg **
wBatieyeapachy T200h: _ - Purchase cost Fuel cost mLabor cost
Gr_o_” Co_mb'nEd '“e'g?t cafac't" "BOS e ong ™ mMaintenance cost mParts replacement mInsurance and Licensing cost
* Driving distance: ~480km *° Fuel station cast
[ ]
BEV Figure 60. Total cost of ownership/ USD per 100km
* Drivetrain capacity: 340-740 horsepower (250-550 kW) and 2,000-
4,000Nm of torgue 240 1
* Battery capacity: 200-600kwh 290
* Gross combined weight capacity: 20-47 metric tons 7
* Driving distance: 150-300km ** 200 4
* FCEV breakeven with BEV: 2024
180 * FCEV breakeven with ICEV- 2028
ICEV 140+
120 ~
* Drivetrain capacity: 400 horsepower (around 300 kW) and 1,200-1,800
pound-fee (1,600-2,500Nm) of torque 100 T ; T T T T ; T ; T .
* Gross combined weight capacity: ~40 metric tons 2019 2020 20271 2022 2023 2024 2025 2026 2027 2028 2029
* Driving distance: >1,000km 2%
FCEV e BEW = [ CEW

www?2.deloitte.com/content/dam/Deloitte/cn/Documents/finance/deloitte-cn-fueling-the-future-of-mobility-en-200101.pdf



Where is hydrogen economy emerging?

Exhibit 2: Global hydrogen projects across the value chain

Global electric-car sales by top markets

Exhibit 14: Landed costs of renewable H; transported from Algeria to 3.5 million vehicles

Central Europe using a pipeline
Costs for at scale production and pipeline transportation? in 2030 20
Pipeline from Algeria to Central Europe, 2,800km Costs, USDVkg
— Pitlires ~0.4 ~18 2.5
¥
15 i . Others
1 ‘ 20 UK.
o) 75"-%rwum France
pipeline 23" new Us.
L5 Germany
M China
1.0
05
4 oo —— e o e
19 Horth America ppebre
B Middie East and Africa :
. 2015 20
5 Latin Amenca 2 283“““““59{' pl'ﬂhﬂ-ts- 1. i st will b Bl cuil By SO0, Rl okl of e ki | 2005-40) dipictind i
Source: EV-Volumes
. 17 ® 90 @53 @45 @23
Giga-scae production: LR T v ater ety b T Hydrogen Council / McKinsey % Co. (Feb 2021) WSJ 2/26/2021: BEV sales driven
:’;“ﬂ“:;'f;ﬁ% W,  Pewer, methand, siecl, hydregen mobify projects with dierent transportation, . . bv subsid
projects “ and industry fesdsiook applicabions types of end-uses conversion, and siorage Hydrogen |n5|ghts On hydrogen |nvestment’ hy V l h
S0 Mpa. . ttps://www.wsj.com/articles/how
market development and cost competitiveness ps:// ' / /
https://hyd i / -europe-became-the-worlds-
ps://Ny Irogencounu .COM/WP oh biggest-electric-car-marketand-
* Far east (Japan, China, Korea with sourcing from Australia); Europe content/uploads/2021/02/Hydrogen-Insights- why-it-might-not-last-
o o 2021-Report.pdf 11614508200?mod=hp _lead pos8
. PoI|cy Incentives important


https://hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf
https://www.wsj.com/articles/how-europe-became-the-worlds-biggest-electric-car-marketand-why-it-might-not-last-11614508200?mod=hp_lead_pos8

Cost of hydrogen, global

Levelized costof hydrogen production (2018$/kg)
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https://www.bloomberg.com/news/articles/2021-03-10/investors-lining-up-for-hydrogen-subsidies-in-top-
copper-miner?sref=w5YUJnwX



Conclusions / Q&A / Follow-up

Hydrogen is an energy vector, not a primary energy source
m Electrification will occur as the world decarbonizes.

m Electricity is efficient for direct generation from wind / solar ?tl:_léit;;i.stance energy carrier
* Medium to long-term energy storage
Is Hydrogen Necessary? * Zero-emission / air quality vs. hydrocarbon fuels
m Benefits: * Commercial fleets requiring high % uptime & fast
Higher energy density refuel
Storage and transport (% uptime; lower cost sources) * High energy density services:

Faster refuel
m Challenges
Infrastructure cost, lower cycle efficiency (1/2 e’)
Roll out lagging vs. electrification

Joe Powell

Joseph B. Powell, PhD -- Chemepd LLC

NAE, Fellow AIChE retired Shell Chief Scientist — Chemical Engineering
www.chemepd.com
JBP@Chemepd.com
Powell@USBCSD.org

* Industry
* Residential heating and power
* Heavy duty transport
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_ Breakeven hydrogen costs at which hydrogen application becomes competitive against
Hyd rogen break even cost low-carbon alternative in a given segment

USD/kg
i _1Hydrogen distribution costs
¥ Heat and power for industry [ Industry feedstock
Taxi example: TCO of a taxi fleet— 2025 1M Enissions and health costs W Feel B Heat and power for buildings [l Transportation?
USD/km [ Infrastructure cost and charging time [l Powertrain s/k
Maintenance and replacement [l Vehicle without powertrain 8 Hydrogen is the only alternative for industry
11 | feedstock for existing applications
Imposing cost of emissions 10 Hydrogen is a _competitiv_e !ow—carbo_n opti_on
makes FCEV and BEV s for space heating where it is competing with
almost competitive heat pumps, e.g., Europe or the US

8 . o .
Commercial mobility On average, passenger Hydrogen-hased steel production
7 applications become vehicles become viable in China breaks even at low-carbon
5 viable around $3/kg  around $2/kg hydrogen costs of $1.9/kg
Total cost
5
4
3
2 fo--
FCEV tai ICE tai BEV tai 1 L
Qualitative Longer range May be penalised in Higher well-to-wheel 0
factors Faster refuelling time certain areas, e.g. eficiency 80 90 100 110 120
Infrastructure scales easily prohibited to drive or 2030 energy demand
.. loss of licence EJ
Better driving comfort
1. Regions assessed are the US, China, Japan/Korea, and Europe
SOURCE: MeKinsey Center for Future Moty 2. Transportation segments breakeven calculated as weighted average

SOURCE: McKinsey; IHS; expert interviews; DoE; IEA

*|IEA, The Future of Hydrogen (2019)



