

The North American Gas Market: Going Global

Kenneth B Medlock III, PhD James A Baker III and Susan G Baker Fellow in Energy and Resource Economics, and Senior Director, Center for Energy Studies Rice University's Baker Institute

October 22, 2018

Disclaimer: Forecasting 101 – Precision is Folly!

- Long term price projections are rarely accurate, and appear adaptive and myopic.
- "The best cure for high (low) prices is high (low) prices"

Source: Data from US EIA

• **Critical point:** Markets react along many margins. This is what we must understand!

Shale has driven an increase in US oil and gas production...

- The last 10 years has born witness to a dramatic shift in US oil and gas production and stimulated a very different view of the future.
 - Light tight oil production is now about 50% of domestic output and is Texas-centric, coming from the Permian (40%), Eagle Ford (23%), Bakken (23%), Others (14%).
 - Shale gas production now accounts for about 63% of all domestic dry gas production, and is heavily concentrated in the Mid-Atlantic and Gulf Coast regions, coming from Marcellus/Utica (49%), Barnett/Haynesville/Eagle Ford/Permian (35%), Others (16%).

Source: Data from US EIA

... triggering an increase in US gas exports...

• US LNG exports and natural gas pipeline exports to Mexico have expanded dramatically since 2000, so much so that the US became a *net* exporter in 2018.

Source: Data from US EIA

... with expanding geographic reach...

• US natural gas exports – pipeline and LNG – grew by more than 8,000 mmcf/d from 2000 to 2017, with the vast majority of the growth occurring since 2014, now reaching 28 different countries.

... with LNG exports at the center of developments...

• US LNG exports have averaged over 2,800 mmcf/d in 2018, and reached over 3,100 mmcf/d in July, which represents a 35x increase in 3 years.

Source: Data from US DOE

... and poised to grow even more...

- There exists 3.8 bcf/d of LNG export capacity between Sabine Pass, Cove Point and Kenai.
- There is another 8.1 bcf/d of capacity under construction, setting the stage for a potential surge of exports, the vast majority of which will come from the US Gulf Coast.
- Notably, there is another 6.8 bcf/d approved and 23.6 bcf/d with applications pending.

Source: Data from US FERC and US EIA; Start dates for new capacity are speculative.

• Of course, capacity does not guarantee volume. But, the reality being forged in the Permian Basin has huge implications. Oil-directed activity is bringing large associated gas volumes, and could open new opportunities. Infrastructure constraints exist, but they are being alleviated.

... with long term market altering implications.

- Physical connectedness with the global market will have implications for market liquidity, pricing and investment paradigms.
- Long-term contracts will remain important because they are "bankable", especially when debt-financing is considered.
- However, take-or-pay clauses will be eroded by the "real option" value associated with capacity rights that are tradable.
- Hence, the chicken-and-egg paradigm...
 - Real option value is greater initially, but as parties begin to capture this value it erodes because trading frequency increases.
 - However, an increase in trading frequency drives greater price discovery, which establishes more market transparency and liquidity.
 - This, in turn, alters the risk associated with market entry, or new investment, because a liquid market mitigates uptake and offtake risk.
 - Liquidity also provides elements of energy security to both producers and consumers because access is not easily compromised.

Source: Ongoing Baker Institute CES research

Where does this all fit? The evolving energy picture

Globally, the US is already having a major impact on supply...

- Production growth in the US represents almost one-third of the net increase in global production since 2008.
- Regionally, both the Middle East and Asia also witnessed large increases in output, with significant local use.
- European production declined, as did output in Mexico and Egypt. While the reasons vary, the implications for each region are significant for trade and geopolitics.
- US shale reveals the rapid impact that technological innovation can have when legacy and scalability – through legal and infrastructure support – are present.

Global Supply Changes, 2008-2017

... which is much needed to meet new demands.

- Demand declined Europe and Ukraine, while it grew virtually everywhere else, especially in Asia.
- In fact, Asian demand growth accounted for 42% of the increase in global demand, with China at the forefront.
- Demand growth in the Middle East was also robust, largely absorbing increases in regional production.
- Demand growth in North America has been met by US production growth.

Key point

The two largest single actors on the evolution of supply and demand are the US and China, respectively. This is expected to continue, with US exports playing a key balancing role.

Global Demand Changes, 2008-2017

An important comment on "energy transitions"

- The most impactful yet oft understated "transitions" affecting energy markets in the last 15 years have been the shale revolution in the US and economic growth in Asia.
- Economic activity and population drive demand. As such, developing nations (not developed nations) will dictate the future of energy.
- Technology, scale and legacy are each important factors.
 - <u>Technology</u> signals how fuels will ultimately compete. This can work in multiple, sometimes competing, directions by raising the efficiency of use of existing fuels *and* by introducing new competitive energy sources. Importantly, capital is a vehicle for technology deployment!
 - <u>Scale</u> matters because energy systems are large and must accommodate expanding access.
 - <u>Legacy</u> of infrastructure and energy delivery systems is the footprint for change.
- Scale and legacy affect the diffusion of new technology.
- <u>Economics</u> matter. The cost-benefit must be favorable for sustainable diffusion of new technology.
- Finally, <u>policy</u> and <u>geopolitics</u> shape, and are shaped, by all of the above.

A parting question: does history repeat itself?

- The early 1980s was a period of robust promise for renewable energy and distributed generation. Why?
 - High oil prices and energy security.
 - Natural gas supply concerns.
- What happened?
 - Fuel costs fell and efficiency increased.
 - Fixed costs of adoption matter.
 - Coal expanded.
- How is the present different?
 - Renewables costs are lower and coal is encumbered, each aided by policy.
 - Energy *and* environmental security.
 - Natural gas supply is robust.
- Are recent developments lasting?

