center for **ENERGYSTUDIES** Rice University's Baker Institute

Decarbonization Policies

Peter R Hartley George A. Peterkin Professor of Economics Department of Economics and Rice Scholar in Energy Studies, Baker Institute for Public Policy Rice University

April 25, 2023

Conceptual framework

Equimarginal principle

- To minimize emission reduction costs:
 - The marginal costs of each method in active use should be equal
 - *Each emitter* should use, and have the same incentive to invent, lowest cost methods of emission reduction, including sequestration
 - Requires all emitters should face the same costs of control
- Externality from CO₂ accumulation is *global*, but there are geographic dimensions to:
 - Changing climates (plural)
 - Climate vulnerabilities
 - Costs of control
- Energy use in high population developing countries will dominate coming decades
 - Carbon leakage

Economic instruments vs. command & control

- C&C tends to "lock in" existing technology as a single "solution"
 - Economic instruments encourage least cost control and invention of new technologies
- Command & control (C&C) involves governments "picking winners"
 - Economic instruments (net emission taxes and permits) are technology neutral
 - C&C encourages wasteful lobbying expenditure
- Market instruments are more compatible with pro-competitive energy market reforms
 - Decentralized markets are more effective at revealing information about control costs

Emission taxes versus permits

- Marginal damages and marginal costs of control are imperfectly known and changing
 - Flatter MD than MC implies efficient net emission *cost* is less variable than *quantity*
 - + Taxes on net emissions involve lower expected losses than permits
 - + A stable emission price is more compatible with investment in long-lived assets
 - Emission reductions are a *risky investment* requiring a risk adjusted discount rate
 - + Delaying emission control is an *option* whose value is increased by uncertainty
- "Double dividend" favors taxes unless permits are auctioned rather than given away
- Giving permits away ("grandfathering") also favors incumbent technologies and firms

- Affordability cost of delivered energy to consumers
- Energy security stability and predictability of energy supply and prices
- Controllability inflexibility of demand requires more flexibility of supply
- Reliability exogenous supply fluctuations require flexible alternative supply
- Storability eliminating supply/demand imbalances over time
- Transportability eliminating spatial supply/demand imbalances
- Convenience available on demand in many locations, low time cost to access, safe
- Usability energy comes in many forms, and some are uniquely suited to some uses
- Non-emission externalities visual, noise, wildlife, land, water, minerals, disposal

Effective alternative to fossil fuels?

- Need energy technology that can displace fossil fuels at scale and without compulsion
- There is time for needed R&D:
 - ► The *least sensitive* GCM are most consistent with the evidence
 - RCP 8.5, touted as "business as usual," is in fact extremely unrealistic
- New nuclear technologies hold greatest promise
 - Energy density matters cost and impacts per unit of energy produced
 - Process heat and manufactured gaseous, liquid or solid fuels
 - Fewer problems than renewables with mineral requirements, transmission, network stability, compatibility with current wholesale electricity markets
 - New nuclear can solve safety, proliferation, regulation and affordability concerns
- The "valley of death" for new energy technologies
- Natural gas, energy storage and short-run versus long-run transition

What else can be done?

- Self-protection policies such as:
 - Building dykes or levees to protect vulnerable coastlines or floodplains
 - Building dams to help protect against flooding and droughts
 - Improving evacuation procedures ahead of threatening weather events
 - Improving weather forecasts to give better warnings to take precautions
 - Improving urban drainage systems and mitigating urban heat island antecedents
 - Burying power lines to make them more resilient to storms
 - Changing building codes to increase structural integrity
 - Removing inducements to build on vulnerable flood plains or coasts
 - Developing crops more resilient to weather extremes
- These defend against adverse weather *whether or not* distributions of those events change
- They can be tailored to address local vulnerabilities and do not require agreement of others

What else can be done?

- Self-insurance policies such as:
 - Better disaster relief including improved cooperation between different jurisdictions
 - Better training and equipping of volunteer rescue services
 - Improved emergency medical facilities
 - Improved civil reconstruction capability
- They can also reduce costs of other disasters unrelated to adverse weather or sea level rise
 - Earthquakes
 - ► Tsunamis
 - Volcanic eruptions
 - Terrorist attacks
 - Major industrial accidents
- This would raise their benefit/cost ratios

