EXPANDING NUCLEAR CAPACITY: PRACTICE & SOLUTIONS

APERC Annual Conference 2025, May 29th, Tokyo

WANG Mo CINIS, China National Nuclear Corporation

了中国核工业集团有限公司 China National Nuclear Corporation

01 GLOBAL TREND in developing nuclear energy

02 KEY FACTORS

impacting the expansion of capacity

03 INTEGRATED SOLUTIONS to bring new capacity online

Triple Nuclear Energy Capacity by 2050

中国核工业集团有限公司 China National Nuclear Corporation 战略规划总院

At COP28, 22 nations launched declaration to Triple Nuclear Energy Capacity by 2050, recognizing the key role of nuclear energy in reaching net zero emissions by 2050 and keeping the 1.5-degree goal set in Paris Agreement within reach.

Triple Global Nuclear Capacity 390 GW to 1,170 GW by 2050

Funding Mechanisms

Mobilize public/private investments

Lifespan Extensions

Prolong operation of existing reactors

Technology Innovation

Advanced reactors including SMRs

Industrial Decarbonization

Coupling with industries to reduce emissions

Equitable Transition

Adopting nuclear energy with safeguards for security and nonproliferation

- Cumulative emissions avoided

1 200

800

600

400

200

 — IPCC 1.5°C scenarios (2050 average) = 1 160 GW nuclear capacity (based on the average of IPCC 1.5°C scenarios)

Small modular reactors (post-2035 market extrapolation) Large-scale new builds (planned) Long-term operation (to 80 years)

2045

2050

2040

Sources: OECD/NEA website (Dec. 2023)

Nuclear Power for the Common Goals

950 GW by 2050

HIGH CASE

y 2050 514 GW by 2050 1 4 times to 2023

LOW CASE

2.5 times to 2023 25% by SMRs 1.4 times to 2023 6% by SMRs

The IAEA has raised its projections for nuclear energy development for the 4th consecutive year.

Low carbon emission

Stable

baseload

power

High energy density

KEY FACTORS INPACTING THE EXPANSION OF CAPACITY

1. STABLE POLICY SUPPORT

The Chinese government advocates for clean energy transition and provides stable policy support to the nuclear power industry.

- Peak carbon dioxide emissions by 2030
- Achieve carbon neutrality by 2060
 - By President Xi Jinping at the General Debate of the 75th UN General Assembly, 22 September 2020
- "Nuclear power should be developed in an active, safe and orderly manner."

-- Government Work Report, March 5, 2021

China has approved over 10 nuclear power units annually for 4 consecutive years since 2022.

RAPID AND STABLE GROWTH IN INSTALLATION

China's nuclear power installed capacity has been steadily increasing, with nuclear energy playing an increasingly prominent role in supporting the reduction of carbon emissions.

CHINA TO BE 102 UNITS IN 2030S

On operation: 58 units, 60,960 MWe

Under construction: 28 units, 33,650 MWe

Approved: 16 units, 18,400 MWe

COAL NATUAL GAS SOLAR PV BIOMASS WIND THERMO HYDRO NUCLEAR

Data source: China National Energy Administration, 2024

	Nuclear power generation	Reduction of standard coal	Reduction of CO ₂ emissions	Reduction of SO₂ emissions	Reduction of NO _x emissions
1994-2024	4.38 trillion kWh	1.254 billion tonnes	3.285 billion tonnes	10.66 million tonnes	9.28 million tonnes
2024	445 billion kWh	128 million tonnes	334 million tonnes	1.1 million tonnes	0.94 million tonnes

2. STRENGTHENING SUPPLY CHAINS

The key to building resilient industrial chains is the combination of self-reliance and global diversification.

AUTONOMOUS & CONTROLLABLE

Controlling critical segments and securing critical resources is the foundation of stability.

114 major nuclear power equipment units in 2024

Natural uranium

Nuclear fuel

Reactor design & operation

Equipment Manufacturing

Plant Constrution

Radioactive waste disposal

Diversifying global suppliers reduces risks from over-reliance on singal market or singal supplier.

For oversea projects: "strong roots at home, smart partnerships abroad"

- **China Supply** : qualified suppliers can supply 100% of key equipments, such as RPV, SG, Pressurizer, RCP, Primary piping, turbine-generator, etc.
- Global Supply: qualified suppliers can supply RCP, DCS, EDG, I&C equipment etc. as per owner's requirements.
- Local Supply: local suppliers will be evaluated and promotional activities will be carried out to optimize local participation in the NPPs construction.

3. ADDRESSING THE FUEL CYCLE

P国核工业集团有限公司 China National Nuclear Corporation 战略规划总院

Uranium is annother issue that requires international collaboration. Uranium Exploration, Mining, Conversion and Enrichment

Uranium resource exploration

We are equipped with the world-class Space-Airborne-Ground-Underground integrated comprehensive exploration capability and can quickly carry out geophysical data processing, interpretation, analysis and evaluation of mineralization geological conditions.

Uranium mining

We are recognized as a global leader in CO_2+O_2 in situ leaching uranium mining technology, with a track record of successful large-scale industrial applications.

Uranium conversion and enrichment

We are capable of realizing uranium conversion (UF_6) and enrichment (EUP) to obtain uranium dioxide (UO_2) for fabrication of nuclear fuel pellets.

3. ADDRESSING THE FUEL CYCLE

中国核工业集团有限公司 China National Nuclear Corporation 战略规划忌院

China has advanced technology for manufacturing nuclear fuel assemblies for various reactor types including HPR1000, AP1000, VVER, CANDU-6, ACP100,HTR and others. **Fuel Fabrication**

□ CF3 for HPR1000 □

AFA3G/AP1000

TVS for VVER

Pebble fuel for HTGR

13

SPENT FUEL MANAGEMENT

Spent fuel management is a complex and rigorous process involving multiple stages, each with specific purposes and technical requirements. By scientifically and reasonably managing spent fuel, radiation risks can be effectively reduced, valuable resources recovered, and environmental impact minimized.

After interim storage, spent fuel can undergo reprocessing. For overseas NPPs exported by CNNC, spent fuel can be returned back to China based on G-G agreement, Chinese laws and regulations.

14

RADIOACTIVE WASTE MANAGEMENT

For 1 unit of HPR1000, the annual waste volume during operation stage is designed as <50m³.

CNNC adopts advanced and proven treatment processes for all types of waste (Liquid/Solid waste treatment) to ensure radioactive waste minimization. We provides customized service covering the whole process from planning, site selection, construction, commissioning to operation.

4. FACILITATING ADOPTION IN EMERGING ECONOMIES

中国核工业集团有限公司 China National Nuclear Corporation 战略规划总院 CINIS

The IAEA Milestones Approach has provided a general guidance:

Milestone 1

Ready to make a knowledgeable commitment to a nuclear power programme.

Milestone 2

Ready to invite bids/negotiate a contract for the first NPP.

Milestone 3

Ready to operate the first NPP

The 19 infrastructure issues addressed:

1.National position	11. Stakeholder engagement
2.Nuclear safety	12. Site and supporting facilities
3. Management	13. Environmental protection
4. Funding and financing	14. Emergency preparedness and response
5. Legal framework	15.Nuclear security
6. Safeguards	16. Nuclear fuel cycle
7. Regulatory framework	17. Radioactive waste management
8. Radiation protection	18. Industrial involvement
9. Electrical grid	19. Procurement
10. Human resource development	

EXPLORE THE FEATURES of SMRs

About 30 nuclear newcomer countries that are exploring the possibility of deploying SMRs

Sources: IAEA, Advances in SMR Developments 2024

- A more affordable option for smaller grids;
- **Replace fossil fuel generation in remote communities and** industries;
- Coupling with renewables and energy storage;
- Low carbon power for urban&industrial heating, steam • supply, seawater desalination, hydrogen production, and Super Computing Network.

Industrial heat

SMR in Operation

HTR-PM

200MW HTGR demonstration project

The Pebble-bed Modular High Temperature Gas-cooled Reactor (HTR- PM) is an advanced reactor with the characteristics of **Gen-IV nuclear power technology** with independent Chinese intellectual property.

COMMERCIAL OPERATION

In Shidao Bay, Shandong Province since December 2023

Installed Capacity	210MWe
Coolant (Helium) Pressure	7MPa
Reactor Outlet Temperature	750°C
Main steam Temperature & Pressure	541℃, 13.9MPa
Design Life	60 years
Application	Power generation
Construction Period(FCD-COD)	132 months

- Inherent Safety
- On-line Refueling
- High-Efficiency Power Generation
- On-Site Heating
- Industrial Steam Supply
- Urban Heating

SMR under Construction

ACP100

"Linglong One"

ACP100 is a new generation of small and elegant NPP, developed on the foundation of inherent mature technology, aimed at a broader users featuring with easily connected to small and medium sized power grid, urban regional heat supply, industrial process steam supply and seawater desalination.

Technical Features

- Advanced integrated reactor
- Passive design of safety system
- Multi Applications
- Modular Design

中国核工业集团有限公司 China National Nuclear Corporation 战略规划定院

ACP100

"Linglong One"

Items	Changjiang Unit		
Installed Capacity	125 MWe		
Design Life	60 years		
Refueling Cycle	24 months		
Availability Factor	≥90%		
Safety Shutdown Earthquake	0.3g		
FCD	July 13, 2021		
Planned COD	Dec., 2025		
Construction Period(FCD-COD)	53.5 months		

ACP100 unit in Hainan Province

Other SMR DESIGNs

The other SMR designs like ACP300, DHR-400, ACP100s, Small Modulor Fast Reactors, etc., each tailored for diverse energy needs, from cities to offshore, ensuring adaptable power generation and fitting other industrial needs.

ACP300:

- 290 MWe electrical output, 80 years design lifetime;
- Compact NI layout, automation and intelligent;
- Micro-grid, mining areas, island and remote areas.

DHR-400:

- Used for heating
- Proven technology, simplified operation and maintenance.
- Zero reactor melt-down, zero emission, easy decommissioning.
- No need for off-site emergency response.
- Strong site adaptability and application expansion.

ACP100s:

- Floating reactor;
- 125 MWe electrical output;
- Power, heat, desalination;
- Offshore oil platforms, islands, coastal industrial parks.

" Meet your power demand with our Delivery Capacity "

INTEGRATED SOLUTIONS TO BRING NEW CAPACITY ONLINE

120412-001

INTEGRATED SOLUTIONS

23

Based on the complete nuclear industry chain, we provide life cycle integrated solutions for overseas NPPs.

Overseas Projects

Over the past 40 years, CNOS has successfully exported 1 nuclear research reactor to Algeria and 6 nuclear power units to Pakistan.

Unit	Туре	Installed Capacity (MWe)	FCD	COD	
C-1	CNP300	300	Aug 1, 1993	Sep 25, 2000	
C-2	CNP300	325	Dec 28, 2005	May 12, 2011	
C-3	CNP300	340	Mar 4, 2011	Dec 6, 2016	
C-4	CNP300	340	Dec 18, 2011	Sep 26, 2017	
K-2	HPR1000	1100	Aug 20, 2015	May 20, 2021	
K-3	HPR1000	1100	May 31, 2016	Apr 18, 2022	

Chashma Unit 1~4 in Pakistan

Karachi Unit 2~3 in Pakistan

Research reactor in Algeria, praised by IAEA as a "model of south-south cooperation"

Days ahead of schedule

All the 6 units in Pakistan were completed within budget, ahead of schedule and operated by owner safely and stably.

One HPR1000 Unit

Supply electricity for 4,000,000 families per year

Reduce 3,120,000 tons of standard coal per year

Reduce 8,160,000 tons carbon dioxide emissions

40,000+ indirect jobs

10,000+ direct jobs

Equivalent to 70,000,00

trees planted

CONSTRUCTION CAPABILITY

中国核工业集团有限公司 China National Nuclear Corporation 战略规划忌院 CINIS

CNEC has developed a series of advanced construction technologies, and successfully completed the construction of world's first HPR1000, EPR and AP1000 units.

By the end of Auguest 2024, one of CNNC's subsidiaries, CNEC has successfully constructed 63 NPPs (domestic and overseas) which across multiple reactors (125MW~1750MW) and has the capability to build up to 40 NPPs simultaneously.

NPPs constructed by CNEC since 2000 to 2023

Open top installation

Automatic welding

Modular construction

Smart construction

Digital construction

Modelling and simulation

ADVANCED DIGITAL PLATFORM FOR NPP

Digital Safety quality

Digital New Energy

Industrial Software

Advanced Sensors and

Intelligent Control

Industrial Internet Platform (DHP)

Cyber security								
	Digital Operation		Digital Equipment		Digital Maintenance			
	Digital Management		Digital Summation		Digital Engineering			
Industrial Data Engineering		Indu	ustrial Artificial Intelligence		Intelligent Equipment (robot)		F	Advanced Sens Intelligent C
		10000		<	Digit	al twin	-	

HIGH STANDARDS IN SAFETY AND PERFORMANCE

China's commercial nuclear power units maintain the highest global standards in operational safety, with world-leading performance in critical operational metrics.

01 Long-Term Safety Record

As of April 2025, nuclear power units in Chinese mainland have safely operated for over 600 reactoryears without any INES Level 2 or higher incidents or accidents.

D2 Globally Recognized Safety Performance

38 Chinese units achieved a perfect WANO Composite Index score of 100, average WANO Composite Index for 54 Chinese units reached 97.52, both ranking first globally.

FINANCING SOLUTIONS

中国核工业集团有限公司 China National Nuclear Corporation 战略规划总院

ECA (Export Credit Agency) facilities have been utilized in the NPP units exported to Pakistan successfully, which can provide stable and sustainable financing support. Financing close can be realized within 1 year on the basis of sovereign credit.

Chinese financial institutes can provide mixed financing support for overseas NPPs construction, includes:

- concessional loan
- preferential buyer's credit
- commercial loan

Financing amount can be up to 85% of EPC contract price, depends on the Chinese export share.

Financing term of ECA facility currently is 20 years, including 8 years' grace period.

Moreover, CNNC can participate minority equity investment in the project company according to owner's requirements.

Other financing solutions can be discussed as per owner's requirements, such as BOT/BOOT/BOO.

Export Credit Agency(ECA) facility for units exported to Pakistan (82% of the EPC contract):

- Concessional loan
- Preferential buyer's credit
- Commercial loan

Note: Concessional loan and Preferential buyer's credit need to be approved by the government of China.

SYSTEMATIC TRAINING

中国核工业集团有限公司 China National Nuclear Corporation 战略规划忌院

CNNC utilizes the Systematic Approach to Training (SAT) to ensure effective training for personnel and has established a complete training system fully applicable to both domestic and overseas.

Training sources:

- Nearly 1,000 professional instructors
- Comprehensive training programs
- Operation training centers
- Skill training centers
- Nuclear vocational skills evaluation centers
- Full scope simulators for HPR1000, AP1000, M310, CANDU6 and VVER

Training content:

- 19 infrastructure issues
- Nuclear regulatory system
- Pre-project works
- Design, manufacture, commissioning, O&M and simulator training

University education programs supported by CNNC:

- Atomic Energy Scholarship Program of China(AES)
- Tsinghua University International Master's Program in Nuclear Engineering and Management (TUNEM)

5,000+ international operators trained

Mock-ups of main equipment

Training center

Pumps training facility

IAEA TRAINING CENTER FOR SMRs

中国核工业集团有限公司 China National Nuclear Corporation 战略规划忌院

We are establishing "Small Modular Reactor Interregional Training Center" as the cradle of the development for small modular reactors in Hainan where the ACP100 is located.

TRAINING SCOPE

- **D** Supply chain and localization
- □ Licensing
- □ Siting and preliminary preparation
- Plant design
- **Construction management**
- Procurement
- **Commissioning**
- **Operation& maintenance**
- **Outage management**

VISION FOR BROADER INTERNATIONAL COOPERATION

中国核工业集团有限公司 China National Nuclear Corporation 战略规划总院 CINIS

After four decades efforts in building nuclear capacity from scratch, China has some experience to share with countries that are interested in nuclear energy.

Bilateral agreements on nuclear energy cooperation

- Signed Agreement on the Peaceful Uses of Nuclear Energy with many APEC countries (THA, IDN, RUS, AUS, CAN, USA...)
- Joint Statements on Advancing the Comprehensive Strategic Cooperation that include nuclear or energy sectors.

Multilateral Platforms and Mechanisms

- BRICS Nuclear Energy Platform
- Regional Comprehensive Economic
 Partnership Agreement (RCEP)
- China-ASEAN Forum on Peaceful Uses of Nuclear Technology
- International Atomic Energy Agency (IAEA)
- Silk Road Fund
- Asian Infrastructure Investment Bank (AIIB)

Thank you

for your attention!

wangmo@cinis.com.cn

37