

How should we think about the future of energy?

Peter Hartley, Department of Economics and Center for Energy Studies, Rice University

How should we think about the future of energy?

- 1. Projected world energy demand growth
- 2. Qualitative characteristics of energy sources
- 3. Energy density
- 4. Energy security
- 5. The "valley of death" for new energy technologies
- 6. Is the current energy policy sustainable?
- 7. But what about CO₂?

udies

Projected world energy demand growth

- All energy demand projections forecast continuing strong world energy demand growth
- Key explanation: High population developing countries entering the "take-off" phase of economic growth
 - Modernization of agriculture
 - \circ Urbanization
 - \circ Industrialization
 - Infrastructure development
 - Increasing per capita energy demand is then translated into strong total energy demand growth

Desirable characteristics of energy sources

- An abundant supply of *high-quality* energy is indispensable to a modern lifestyle
- Desirable characteristics of energy sources
 - Affordable
 - Reliable
 - Controllable
 - Storable
 - o Transportable
 - Versatile
 - Environmental externalities
 - Energy security implications
- Currently, fossil fuels score more highly on many of these dimensions than do the alternatives
- The main criticism of fossil fuels relates to their emissions
 - Control technologies have substantially mitigated the problem of conventional toxic flow pollutants
 - \circ We return to CO₂ at the end of the discussion

Baker | Center for Energy Studies

Energy density

- Volumetric and gravimetric energy density can significantly affect the desirability of different energy sources
 - \circ $\;$ These affect the explicit costs of inputs:
 - \circ $\;$ labor, capital, minerals, land, water, transport services, etc $\;$
 - \circ And the implicit costs of externalities
 - \circ $\;$ the costs of emission, accident, etc $\;$
 - <u>Per unit of energy services supplied</u>
- One reason for the high value of liquid hydrocarbons, especially for transport applications, is their relatively high volumetric and gravimetric energy density
- To support billions of people living a modern lifestyle, sources with high energy density will be essential

Energy security

- Energy security can be identified in part with national security concerns:
 - Reliance on countries that are politically unstable or geopolitical adversaries for energy resources
 - A need to defend vulnerable transport links for the import of essential energy sources
 - The reliance of modern military forces on substantial volumes of refined oil products
- Energy security also has economic dimensions:
 - Many recessions have been linked to sudden, large increases in energy prices
 - Higher prices and reduced growth from energy supply shocks raise difficult trade-offs for monetary policy
 - Higher energy prices also increase financial flows from net importers to net exporters of energy commodities
 - Energy price variability deters investment by increasing uncertainty about future energy prices
- Many measures to increase energy security are *public goods*

The "valley of death" for new energy technologies

- The "valley of death" for new energy technologies
 - A valley of death was thought to be a problem for *all* new technologies with high R&D requirements
 - This seems to be an issue for energy technologies, but not IT or pharmaceuticals, for example
 - Key distinction: Substantial additional investment is required to *deliver* energy services to customers *after* the R&D phase
- More general point:
 - The most successful new energy technologies are probably going to use a lot of existing infrastructure

Is current energy policy sustainable?

- Current policy *assumes* a renewables/batteries-only system is the long-run target, but is that likely?
- Frequency control:
 - In traditional power systems, synchronized rotating turbines with high inertia resist short-term fluctuations in frequency
 - Wind, solar, and battery systems convert DC-generated power into AC using grid-following inverters
 - Micro-grids have a grid-forming inverter that can be transformed to and from grid-following mode (so the micro-grid can be "islanded"), but can multiple grid-forming inverters be synchronized into a reliable and resilient system?
- Wholesale market operation
 - Extra renewable generation operates at similar times to existing capacity, requiring expensive excess capacity, long-term storage and/or curtailment
 - If all supply has zero marginal costs, a competitive market will lead to zero prices most of the time, making it difficult to pay for fixed investment costs
 - Low elasticity of electricity demand can produce extraordinarily high prices when capacity constraints bind, but capping wholesale prices exacerbates the missing money problem
- Not all uses of energy can be electrified
 - Prominent examples may include aviation and many high-temperature industrial processes

But what about CO2?

- Contrary to popular sentiment, CO2 is not the primary, let alone the sole, issue determining the future of energy
 - High-population developing countries will likely become more concerned about environmental issues, but conventional toxic flow pollutants will be their first concern, not CO2
 - With them not controlling CO2 emissions, what the developed countries do does not matter for CO2 accumulation
 - Many anthropogenic and natural causes change climates, while *existing* climates have many extreme weather events
 - CO2 is not directly hazardous, has positive externalities for plant growth, including agriculture, while changes in some climates resulting from increased temperatures are likely to be positive
 - Many uncertainties impede the effectiveness and therefore the desirability of a policy of reducing CO₂ emissions
- An alternative set of policies involves public defensive measures to reduce the harmful consequences
 - \circ $\;$ Global agreement is not required to implement these $\;$
 - Each country can tailor measures to the risks it faces, making the policies potentially much more effective
 - Public defensive measures allow retention of any beneficial effects from increased CO2 accumulation
 - Some public defensive measures also reduce the costs of events unconnected to weather, such as volcanic eruptions, tsunamis, industrial accidents, terrorist attacks, or pandemics
 - Public defensive measures do not increase energy costs, and do not impinge on energy security
 - By reducing the costs of *current* extreme weather events, they begin yielding benefits immediately

nstitute | Eneray Studies

<u>Center for Energy Studies | Baker Institute</u> <u>Baker Institute Center for Energy Studies (CES) | LinkedIn</u>

Speaker Contact Information

Email: hartley@rice.edu

Office: Kraft Hall 413

Phone: +1 713 348 2534 (office), +1 713 304 1268 (mobile)