

2-4. Decarbonizing Coal-fired Power Generation

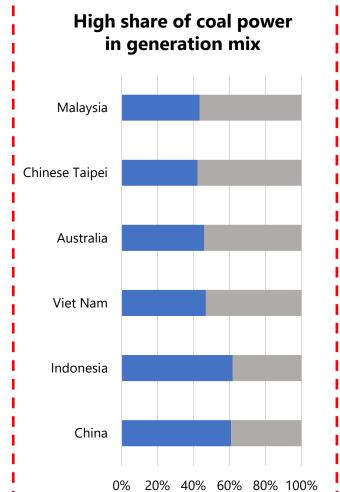
APERC Workshop

The 69th Meeting of APEC Energy Working Group (EWG69) 25 February 2025 – Gyeongju, Korea

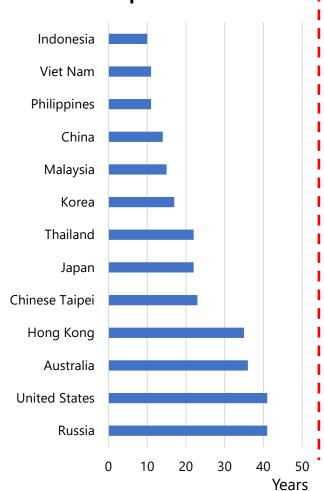
Mr Phung Quoc Huy, Senior Researcher, APERC

Contents

- Setting the scene
- Potential solutions
- Key takeaways



Why is decarbonizing coal-fired power generation an urgent issue in APEC?

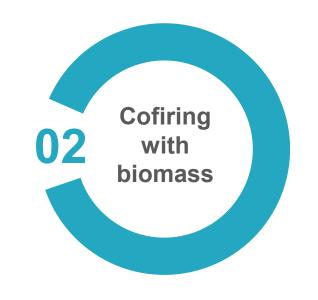

The most carbon-intensive power generation

Coal power, 79% (7653 Mt)

> Others, 21% (2076 Mt)

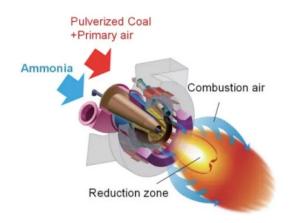
Young age of existing coalfired power fleet

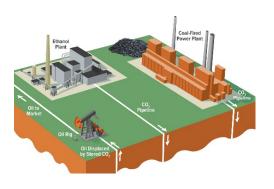
Meeting Net-zero target of economy

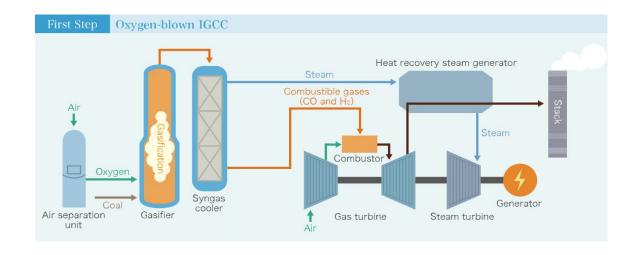

Note: All the charts above use data from the year 2023.

■ Coal ■ Others

What are the potential solutions?





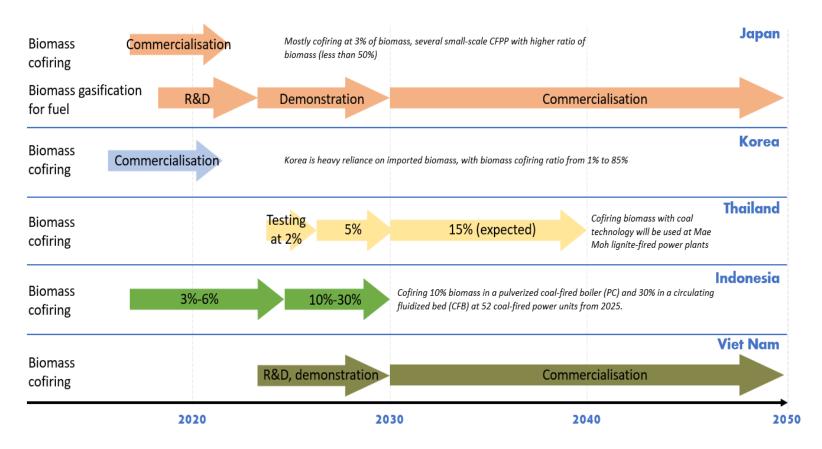


Improving thermal efficiency

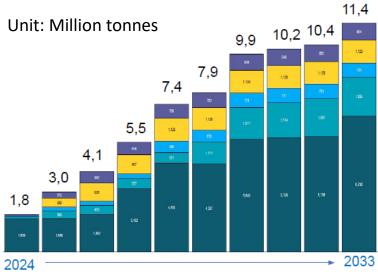
Thermal efficiency in different coal power technologies

Technology	Efficiency (%)	Coal consumpt ion (g/kWh)	Steam tempera ture (°C)	CO ₂ intensity (gCO ₂ /kWh)
Integrated Coal Gasification Combined Cycle (IGCC)	46 to 50%	256-272	1300	629-680
Advanced Ultra- supercritical	45 to 50%	230-320	≥700	670-740
Ultra-supercritical (USC)	Up to 45%	320-340	≥600	740-800
Supercritical	Up to 42%	340-380	550-600	800-880
Subcritical	Up to 38%	≥380	≤550	≥880

Osaki CoolGen demonstration project, Japan


- 2013-2017: Construction of 166-MW oxygen-blown IGCC demonstration plant.
- Thermal efficiency: around 46% on commercial units.
- CO₂ emission: reduced by 15% compared to USC.

Challenges: high investment cost, constraints in retrofitting existing plants


Cofiring with biomass

Development status in cofiring with biomass at selected APEC economies

Challenges: shortage of biomass, deforestation issue

Cofiring with biomass in Indonesia

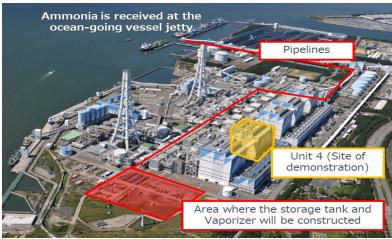
The Target of Biomass Utilization in 2031

Number of CFPP : 52 Power Plant

Total Capacity of CFPP : 18.895 MW


Biomass Needed : 10,2 Mn Ton/yr

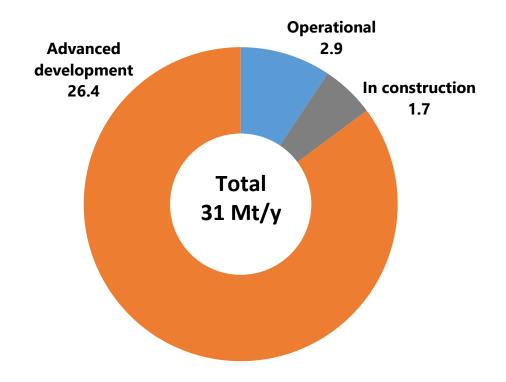
Ration Biomass Co-firing : 12 %


Cofiring with ammonia

Development status in cofiring with ammonia at selected APEC economies

Challenges: has not been commercialized yet, ammonia supply chain

Cofiring with ammonia in Japan



- Name: Hekinan CFPP, Unit 4
- Location: Aichi Prefecture, Japan
- Installed capacity: 1000 MW
- Co-firing rate: 20% ammonia
- Testing duration: Jan-Jun 2024
- CO₂ emissions: reduced by 20%
- NO_x emissions: \leq mono-firing coal

Retrofitting CCUS

CCUS capacities at APEC coal-fired power plants

Challenges: need substantial capital investment, storage sites, public acceptance

The largest coal-fired power plant equipped with CCUS in Asia

- Capacity: 500 000 tonnes/year
- Location: Jiangsu province, China
- Capture type: Post-combustion
- CO₂ Utilization: Enhanced Oil Recovery

Decarbonizing solutions in selected APEC economies

Economies	Thermal efficiency improvement	Cofiring with biomass	Cofiring with ammonia	Retrofitting CCUS
Australia	•			
Canada	•			•
China	•	•	•	•
Indonesia	•	•	•	•
Japan	•	•	•	•
Korea	•	•	•	
Malaysia	•			
Mexico	•			
Philippines	•			
Russia	•			
Chinese Taipei	•			•
Thailand	•	•	•	•
USA	•			•
Viet Nam	•	•	•	•

Key takeaways

Urgency of decarbonizing coal-fired power generation

- High carbon intensity
- High dependence on coal
- Young coal-power fleet
- Net-zero target

Potential solutions

- Improving thermal efficiency
- Cofiring with biomass
- Cofiring with ammonia
- Retrofitting CCUS

Challenges

- Significant investments are required for all solutions
- Technical and logistical barriers, including infrastructure limitations and resource constraints
- Balancing economic and environmental considerations

Thank you.

https://aperc.or.jp

