

For APEC Symposium on Pursuing Decarbonization of Fossil Fuels

Towards the Realization of International Liquefied Hydrogen Supply Chain

October. 11, 2023 Kawasaki Heavy Industries, Ltd.

KHI Group Hydrogen Products

Kawasaki Heavy Industries contributes to decarbonization as **the only company in the world** that has the technology for the entire hydrogen supply chain **to produce**, **transport**, **store**, **and utilize hydrogen**.

Kawasaki

Powering your potential

Concept of a CO₂-Free Liquefied Hydrogen Supply Chain

Hydrogen Producing Economy

Powering your potential

Hydrogen Utilizing Economy

Hydrogen Carriers and their Characteristics

	Ammonia (NH ₃)	Organic Hydride (MCH)	Liquefied Hydrogen
Volume (vs. gaseous form)	1/1300	1/500	1/800
Conditions for liquefaction	-33°C, atmospheric pressure	Atmospheric temperature and pressure	-253°C, atmospheric pressure
Toxicity	Toxic, corrosive	Toxic with toluene	None
Direct usage	Mixed combustion in coal-fired power generation, etc. (pure hydrogen must be separated)	Not possible (hydrogen separation is required)	Allow to evaporate, then use as-is
Transportation infrastructure	Can be transported using existing technology (chemical tankers etc.)	Can be transported using existing technology (chemical tankers etc.)	Domestic distribution is Widely spread on an industrial scale
Issues facing expanded usage	Development of dehydrogenation equipment / direct use technology	Reduction of energy loss in hydrogen separation	Development of large-volume cryogenic transportation technology

*Estimated by Kawasaki with reference to Agency for Natural Resources and Energy's

"Direction of Hydrogen-Related Projects Research and Development as well as Full Implementation," April 2021 edition, etc.

Hydrogen Carriers Energy Efficiency

Energy available along the conversion and transport chain in hydrogen equivalent terms, 2030

IEA. All rights reserved.

Notes: LH_2 = liquefied hydrogen; NH_3 = ammonia; LOHC = liquid organic hydrogen carrier. Numbers show the remaining energy content of hydrogen along the supply chain relative to a starting value of 100, assuming that all energy needs of the steps would be covered by the hydrogen or hydrogen-derived fuel. The Haber-Bosch synthesis process includes energy consumption in the air separation unit. Boil-off losses from shipping are based on a distance of 8 000 km. For LH_2 , dashed areas represent energy being recovered by using the boil-off gases as shipping fuel, corresponding to the upper range numbers. For NH_3 and LOHC, the dashed area represents the energy requirements for one-way shipping, which are included in the lower range numbers.

World-first Hydrogen Energy Supply Chain

Japan-Australia Pilot Project (HESC Project)

Promoted with Japanese and Australian government, Kobe city, and private sector partners
Aiming to establish a stable and large-scale hydrogen supply chain system around 2030, the pilot project <u>demonstrated technology by building a 1/100 scale of commercial supply chain</u>

Iwatani Corporation, Kawasaki Heavy Industries, Shell Japan, J-Power, Marubeni,
ENEOS, KLINE
(As of March 2023)Kawasaki Heavy Industries, J-Power, J-Power Group, Iwatani Corporation,
Marubeni, Sumitomo Corporation AGL (Australian Energy Company)
(As of March 2023)

*1: HESC(=Hydrogen Energy Supply Chain) Project

*2: FY 2015 to FY 22: NEDO issue-setting industrial technology development expense subsidy program "Demonstration Project for Building a Large-Scale Maritime Transport Supply Chain for Hydrogen Derived from Unutilized Brown Coal"

Status of the Pilot (HESC) Project

Hydrogen Production (Australia)

Maritime Transportation

Land Transportation and Liquefaction (Australia)

Unloading and Storage (Japan)

World's First International Shipping of Liquefied Hydrogen

World's first demonstration of hydrogen transport and cargo handling by liquefied hydrogen carrier

First voyage from Japan to Australia (Dec. 24, 2021)

Japan-Australia Pilot Project Completed (Apr. 9, 2022)

"Suiso Frontier" Australia arrival ceremony (Jan. 21, 2022)

At the ceremony to complete the demonstration of the Japan-Australia hydrogen supply chain

HySTRA Prime Minister Kishida attended the meeting.

Commercialization Demonstration Project

Adopted as a Green Innovation Fund project for commercial supply chain construction in 2030.

Began a commercialization demonstration project which implements technology for enlargement.

Commercialization Demonstration Overview and Scale Image

K Kawasaki

Powering your potentia

Development of Scaling Up on LH2 Technology

Pilot Ship Tank: 1,250m³

Commercial Ship Tank: 40,000m³

(4 tanks, 160,000m3 in total)

Pilot Terminal Tank: 2,500m³

Commercial Terminal Tank: 50,000m³

(Interface equipment, such as Loading arm and Compressor, are also under development)

Progress and scale of commercial demonstration of Liquefied Hydrogen Supply Chain

Reduce hydrogen costs by increasing the size of equipment

11

Powering your potential

Summary

Kawasaki aim to realize commercial scale of liquefied hydrogen carriers and various equipment through commercial demonstration planning in the mid-2020.

<u>Kawasaki does not limit hydrogen sources to 'fossil fuels,' to support the hydrogen</u> <u>introduction</u> described in the "Green Growth Strategy through Achieving Carbon Neutrality in 2050" decided by Japanese government.

In establishing an international supply chain for liquefied hydrogen, <u>Kawasaki will</u> contribute to the realization of hydrogen costs and installed volumes that are competitive with fossil fuels in 2050 by cooperating with the demand side of hydrogen power generation, which is expected to generate large-scale demand.

