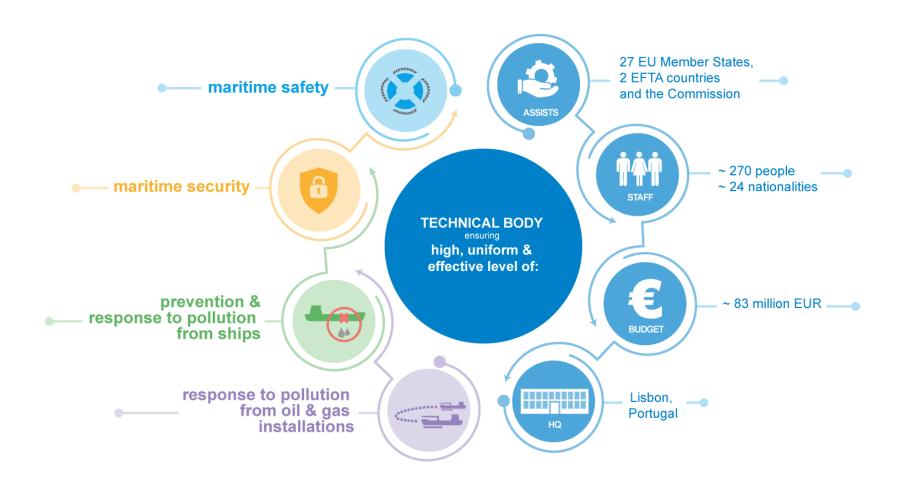
EMSA study Potential of Ammonia as Fuel in Shipping

Sergio Alda

Senior Project Officer Unit 1.1 - Sustainability


APEC Symposium Pursuing Decarbonization of Fossil Fuels

Kobe, 11 October 2023

EMSA in a nutshell

EU ETS extension to maritime

Cap-and-trade' system: puts a price on GHG emissions to harness economic forces

Covering around **2/3 of CO₂** emissions related to
EU maritime transport

Applicable **to large ships** (above 5000 gross tonnage) regardless of the flag they fly

ETS-funded Innovation Fund for ships and ports

FuelEU Maritime - overview

- Limits the GHG intensity of the energy used on-board
- Obligation to use OPS or zero-emission technology from 2030
- Targets established in 5-year intervals from 2025 until 2050

EU ports **LNG** installations

EU ports **High-voltage OPS**

Battery-equipped

ships

LNG-using or

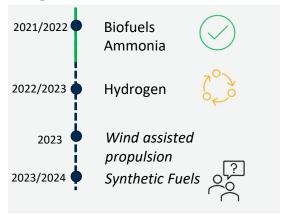
EMSA Studies on Alternative Fuels and Power Solutions

- Part of EMSA's work in the area of sustainability and in support of the European Green Deal
- Previous studies conducted on: Biofuels (2012), LNG (2013),
 Methanol/ethanol (2016), Fuel Cells (2017), Batteries (2020)
- Framework contract signed in 2021 and for a period of 4
 years and up to a total of 6 studies
- Consortium integrated by:

- New studies on Biofuels and Ammonia released in October 2022
- 1st Workshop on Alternative Fuels (biofuels and ammonia) and Power Solutions for Shipping and Ports held 18-20 October
- Link to the studies:

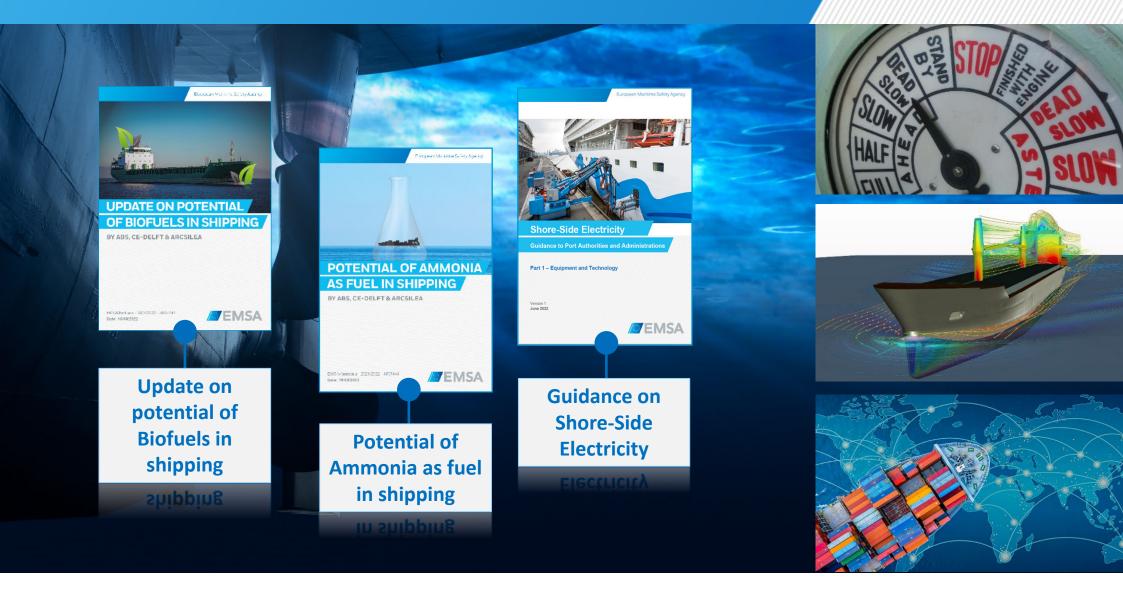
<u>Technical Reports - EMSA - European Maritime Safety Agency (europa.eu)</u>

EMSA Studies Project Organisation


Key Numbers

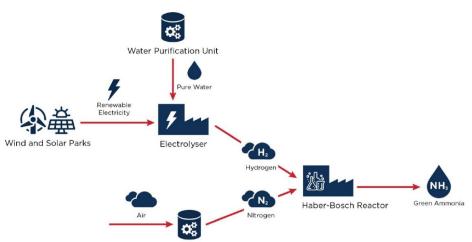
- 6 Alternative Fuels / Power
- 3 Partners + Industry/Authorities
- 20 Team members
- Dedicated HAZID workshops

Tasks


- Task 1 State of Play
 Production pathways, scalability, availability, sustainability, suitability, cost analysis
- Task 2 Standards/Regulations/Guidelines IMO, IGF code, SOLAS, IACS, ISO, ISM, Regional Regs, Guidelines, SIGGTO, SGMF Regulatory Gap Analysis
- Task 3 Safety Assessment Selected 3/4 Designs HAZID workshops Suggestions for improvement

Progress

Studies released



Availability and Scalability

HB is the most mature process

Process Type	Expected Efficiency [up to]	
Pathway 1	~72%	
Electrolysis and Haber-Bosch synthesis	72/0	
Pathway 2	9%	
Direct solar hydrogen production	[up 70%]	
Pathway 3	~57%	
Biogenic hydrogen production		
Pathway 4	12-37%	
Non-thermal plasma synthesis	[up to 45%]	
Pathway 5	14-62%	
Electrochemical ammonia synthesis	[up to 90%]	

Air Separation Unit

Grey NH3
Production

235

Mtons/year

2019

Green NH3
Announced

>133

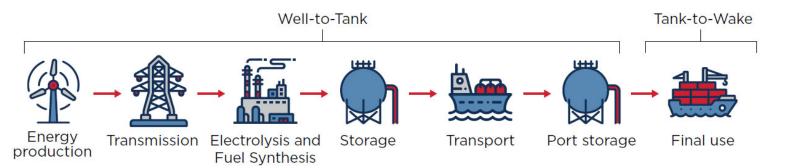
Mtons/year

*annouced blue and green ammonia production

What are the challenges?

- Many sectors will have demand for green or blue ammonia.
- · Green electricity will also be in high demand
- Demand depends on policy, many of which are not yet confirmed
- Green production needs to be efficient, utilized at maximum capacity and this poses challenges:
 - Location, pipelines, access to ports
 - Connection to grid (sustainable?)
 - Potentially oversized

Sustainability


The challenge is green electricity

- Certification mechanisms
- If connected to the grid, need to ensure the source of that energy
- Transportation, if not decarbonised, may lead to increased footprint

Engine still under development

- NOx & N2O slip uncertain
- Pilot fuel usage

Pollutant	HFO, MGO	LNG	Ammonia (combusted in engines)
SO ₂ and metals	Present	Not present	Not present
Carbon monoxide and hydrocarbons	Present	Present or increased	Not present
VOCs and PAHs	Present	Reduced	Not present
NO _x **	Needs SCR for Emission Control Area	Otto engines meet Emission Control Area without SCR	Needs SCR for Emission Control Area
Direct particulate matter	Present	Reduced	Reduced
Ammonia (NH ₃) ***	Low	Not present	Unknown
N ₂ O	Present	Present	Present or increased****
CH ₄	Low	Present at Otto engines	Not present
CO2*****	Present	Present	Not present

Sustainability (2)

Other Environmental Impacts (production)

- Production of hydrogen requires pure, deionized water. The amount of (fresh) water can increase water scarcity. Desalination and rejection of brines can be detrimental to ocean biodiversity and marine life;
- Generating green electricity will require land (solar or onshore wind);
- Production of Solar should avoid using land used for crops;
- Inland transportation has been ongoing for many decades. Accidents happened and handling of ammonia is known;
- Ammonia spills can be harmful for marine life, need for further evaluation.

Where Solar?

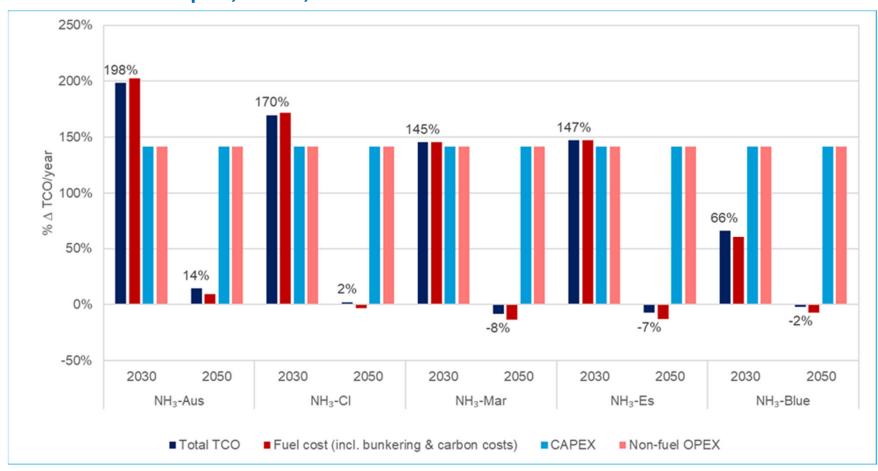
- Western Australia
- Northern Chile
- Parts of China and US
- Northeast Brazil
- Northern Africa

Where Wind?

- Avoid land used for crops (Australia, Chile, etc)
- Using offshore may be an option in Western Europe and USA

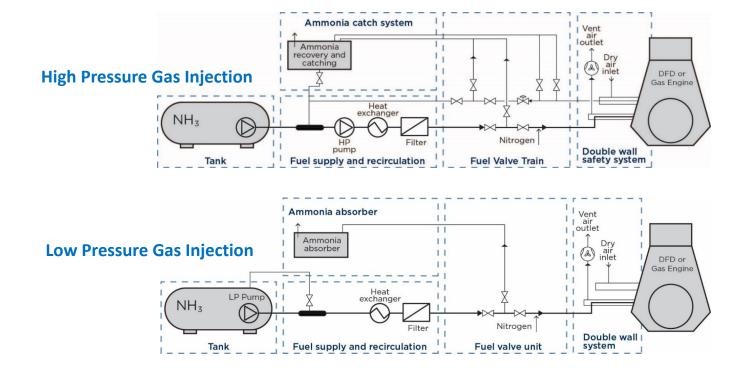
Sustainability (3)

Other Environmental Impacts (bunkering/onboard)


- Ammonia spills may cause more sever harm:
 - Ammonia dissolves partly into water (towards an equilibrium of NH3, NH4+ and NH3 (g))
 - At pH of 8, NH3(aq) ranges from 0.8% to 7.4% (higher pH, higher percentages)
 - Toxicity depends on bio-sphere, from 17 mg/L to 510 mg/L in toxicity limit for Ammonia exposure
- Ammonia spills may be a threat to the marine life, also quality of the water, nutrients on the water, stimulate noxious blooms of algae.
- Stricter safety for bunkering or when vessel enter and leave ports (similar to LNG, but for different reasons)

Total Cost Ownership (TCO) - Ammonia fuelled vessel

Containership 14,500-20,000 TEU – TCO difference to VLSFO vessel


Suitablility

What is needed?

- 1. Tanks, either Type A or Type C
- 2. Ammonia supply pumps
 - I. High pressure ~ 80 bar
 - II. Low pressure~ 5-15 bar
- 3. Temperature control

- 4. Filters
- 5. Double block and bleed
- 6. Vent system incl. a collection & treatment system for ammonia vapor
- 7. Double wall pipe system

Conclusions

Ammonia as a fuel is likely to take place. It presents a series of advantages and is a promising fuel:

- Known and well-estabilished production process
- Naturally carbon-free, although attention is to be given to NOx, N2O and Pilot fuel and trully green production pathways
- It is known to shipping as a cargo (IGC covers it), and poses many challenges to be used as a fuel
- There are challenges to overcome to handle its corrosivity and toxicity: bunkering, engine, fuel supply systems.
- However, it has been used for many decades and there is substantial knowledge available

Main challenges:

- Ensure availability of green energy and competition with other sectors
- High costs associated with green ammonia production
- Safety and Regulations concerns: need to accelerate awareness and regulatory framework developments
- Need more knowledge on spillage and other environmental aspects
- IMO Guidelines to be ready by 2025

Thank you for your attention

Follow our activities on social media:

emsa.europa.eu/newsroom/connect

