

HSINTA GT33 H₂ Co-firing Demonstration Project

Hao Hsien Hsu April 23 2024

I. Schedule of H₂ co-firing plan

I. H2 co-firing process & equipment architecture

III. H₂ co-firing benefit

IV. Difficulties for H₂ co-firing

V. Conclusions

I. Schedule of H₂ co-firing plan

II. H₂ co-firing process & equipment architecture

II. H₂ composition table

SE Requirement Specifications ISO 14687 Type I Grade A

Gas constituents	Unit	Value
CH ₄	Vol.%	To be reported
C_2H_6	Vol.%	To be reported
C ₃ H ₈	Vol.%	To be reported
C_nH2_{n+2}	Vol.%	To be reported
C_nH_{2n}	Vol.%	To be reported
H ₂	Vol. %	≧ 98
CO	Vol.%	To be reported
H ₂ O	Vol.%	cf. condensation point
N_2 +Ar+CO ₂	Vol.%	≤ 2
O ₂	Vol.%	To be reported

			No. 22, Fengling Rd., Xinshi Dist. Tainan City 741, TANWAN(R.O.C)		
Linde	LienHwa	Analytical Report	Phote Pex:	(06)589-5843 (06)589-5843	
冬 产 名 係 Customer Name:	與涂電	流 & 从 犹 Reference:	0227		
彩 然 朝 新 Bampie Cylinder:	8180	紙合書號碼 Report No.	TVP-23-12-0227		
氟酸成分 Gas:	H2 99.999%	演 克 H 积 Fill Date:	2023/12/09		
胡 航 規 格 Cylinder Type:	24.8M3	슈 하는 H RH Analysis Date:	2023/12/09		
灌克慶力/重量 Fill Pressant Vieight		係 存 期 所 Shelf Life:	2023/12/10		
朝麻脑號	8180				

COMPONENT H2	SPECIFICATION		CONCENTRATION	
	99.999%		>99.999%	
THC(as CH4)	1.	ppm	<0.01	ppm
CO2 CO	0.5	ppm	<0.05	ppm
N2	5	ppm	0.126	ppm
H2O	1	ppm	0.126	ppm
02	1	ppm	0.064	ppm

Analysis Method : "GOW MAC 816 DID Analyzer. "HORIBA GA-390E CO CO2 Analyzer. "GOW MAC 816 N2 Analyzer. "SERVOMEX DF-746 "Servomex DF-550E

Hydrogen H,

H₂

III. H₂ co-firing benefit

1. 5% H₂ co-firing can reduce carbon dioxide emissions by 1 ton per hour at full load.

2. Verification standards:
(1) NOx Emissions < 8ppm
(2) 5% H2 co-firing can not affect the power generation efficiency of the unit, and the unit can automatically switch between H2 co-firing and non-H2 co-firing.

V. Conclusions

★ To build the first domestic H₂ co-firing gas turbine generator. (The first SGT6-2000E for H₂ co-firing power generation in the world)

★ To establish operation and maintenance mechanisms and safety standards for H₂ cofiring in large-scale Taipower units. (To provide a reference for other H₂ co-firing power generation units in domestic.)

Thank You

