

1-4. Creating Transport Demand for Hydrogen

APERC Clean Hydrogen Workshop

associated with the EGNRET 60 meeting 23 April 2024 – Kaohsiung, Chinese Taipei

Finbar Maunsell, Researcher, APERC

Does hydrogen fit into the transport transition?

- Hydrogen benefits:
 - high energy density compared to batteries.
 - well suited to heavy trucks, intercity buses, aviation, and boats.
- Hydrogen challenges:
 - storage
 - production costs
- These challenges might slow commercialization
- But e-fuels are a promising approach...

Introducing e-fuels

- E-fuels = carbon + hydrogen
 - Low-emissions electrolytic hydrogen is 70% of costs
 - CO2 capture is 20% of costs
 - All other steps are already commercialized (e.g. Fischer-Tropsch process)
- Some benefits:
 - A true drop-in alternative for all liquid fuels
 - Removes the need for FCEV's or changes to engines

E-fuels and... PHEV's?

- The light vehicle BEV transition does have some problems:
 - Minerals supply and vehicle production
 - Scaling up charging infrastructure at the same rate as EV uptake
 - Range requirements.
- Replacing half the BEVs with PHEVs with e-fuels would mean:
 - Less mineral requirements
 - Half the chargers
 - No range issues
- Note, we assume the owner has access to a private charger and never uses public chargers.

Energy use from BEV's vs e-fuels in Japan

- We modelled two scenarios:
 - High BEV share
 - High e-fuels and PHEV's (about a 50/50 sales share of PHEV's to BEV's)
- The energy use graphs below show the energy requirements in passenger transport.

Sales shares in Japan

- Compare:
 - the rapid uptake of BEV's on the left
 - the scenario where half of BEV sales are PHEV's on the right.

No exponential growth required

- Slower BEV growth means slower charging station growth.
- By 2050 there are half as many charging stations

Public chargers, high BEV share

Public chargers, high PHEV share

Side effects for heavy vehicles, aviation and marine sectors

- E-fuels in passenger transport provides more certainty for e-fuels where there are few alternatives
- E-fuels could be fully transitioned to use in these mediums from 2040 onwards:

Non road energy by Fuel, no Efuels Non road energy by Fuel, high Efuels

Challenges with e-fuels

- How to lower hydrogen and carbon capture costs?
- E-fuels may cost more than other fuels
- PHEV utilization rate probably needs to be increased using policy or nudging
 - it is currently at 50%, we assumed it would rise to 70% by 2040
- PHEVs are not being produced at the same scale as BEVs
- PHEVs cost as much as BEVs

Conclusions

- Using more PHEVs in the early stages of the transition means the growth of EVs does not have to be exponential.
- The same CO2 reductions can be achieved.
- Support the e-fuels industry for harder to decarbonize heavy transport types.
- A 100% BEV passenger fleet can still be achieved in the long term.
- E-fuels mostly rely on the success of green hydrogen and carbon capture technologies.
- This is not a guaranteed solution, but it is a valuable option to keep open.

Thank you.

https://aperc.or.jp

