

Asia-Pacific Economic Cooperation

The Concept of the Low-Carbon Town in the APEC Region

Sixth Edition

Volume II

Low-Carbon Measures

November 2016

APEC Energy Working Group

APEC Project: EWG 01 2015A APEC Low-Carbon Model Town (LCMT) Project - Phase 6

Produced by APEC Low-Carbon Model Town Task Force

Katsushi Takehiro Ministry of Economy, Trade and Industry, Japan

Asia Pacific Energy Research Centre Inui Building, Kachidoki, 1-13-1, Kachidoki, Chuo-ku, Tokyo, 104-0054, Japan Phone: (+81) 3-5144-8551 E-mail: master@aperc.ieej.or Website: http://aperc.ieej.or.jp

For Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace, Singapore 119616 Phone: (65) 6891-9600 E-mail: info@apec.org Website: http://www.apec.org

© 2016 APEC Secretariat

APEC#216-RE-01.27

The Concept of the Low-Carbon Town in the APEC Region Sixth Edition Volume II Low-Carbon Measures

Contents

1	. Low-Carbon Measures and Their Applicability	3
2	. Low-Carbon Measures with Case Examples	8
	(1) Cogeneration System/Combined Heat and Power/Trigeneration	9
	(2) Using Sea/River Water	. 13
	(3) District Heating and Cooling (DHC)	. 15
	(4) Sunlight Reflection, Shading and Thermal Insulation	. 17
	(5) Façade Engineering	. 19
	(6) Natural Ventilation	. 21
	(7) Daylight Use plus Lighting System	. 23
	(8) Hybrid of Natural Ventilation plus Air Conditioning	. 25
	(9) High-efficient Heat or Cooling Source plus Thermal Storage	. 27
	(10) Waste Heat from Sewage Treatment Plant	. 30
	(11) Hydroelectric Power Generation	. 32
	(12) Waste Heat from Incineration Plants	. 34
	(13) Solar Power Generation	. 36
	(14) Solar Heating & Cooling	. 39
	(15) Biomass Power Generation	. 41
	(16) Geothermal Power Generation	. 45
	(17) Wind Power Generation	. 47
	(18) Fuel Cell	. 50
	(19) Transportation (Establishment of Public Transportation Network)	. 53
	(20) Local Transportation System (Bus, LRT, etc.)	. 55
	(21) Electrically Driven Vehicle	. 58
	(22) Infrastructure for Electrically Driven Vehicle	. 60
	(23) Community Cycle Sharing	. 62
	(24) Smart Grid	. 64
	(25) Community Energy Management System	. 68

(26) Home Energy Management System	71
(27) Factory Energy Management System	73
(28) EV Charging Management Solution	75
(29) Demand Side Management	77
(30) Simulation Results for CO ₂ Emission Reduction (Central TOKYO 7 Wards Area)	79

	Classification of M	easures		Арр	olicat	oility a	as	
Ourseland	Majar	Minor	Low oorbon Magging		Туре	•		Case
Supply /	Major	Minor	Low-carbon Measure	Точ	wn ^{No}	te 1)		
demand	Classification	Classification		Ι	II	III	IV	No.
Demand	Composition of	Transit Oriented		н	н	м	L	
	urban space	Development (TOD)		11		IVI	L	
		Environment space	Green way network	Н	Н	Н	М	
		development	Underground space	М	L	х	х	
			network	111	L	^	^	
	Buildings	Reducing heat	Reflection of solar energy					
		loads	and heat insulation, high					
			solar-reflectance paint for					
			roof, shading, advanced		н			(4) (5)
			glazing, management of	н		н	н	
		air leakage when hea					П	(31)
			or cooling; installation of					
			very efficient appliances					
			and equipment to cut					
			internal heat generation					
		Highly efficient	Highly efficient heat	н	н	н	н	(9)
		facility systems	source plus heat storage				11	(3)
		Equipment installed	Fuel cells, energy	н	н	М	м	
		at facilities	storage, etc.		п	IVI	IVI	
		Passive energy	day light use, natural	н	н	н	N /	(6) (7)
		design & equipment	ventilation,			П	Μ	(8)
	Environmentally	Urban climate	Micro climate, heat island		м	М	х	
	related		management	н	IVI	IVI	^	
	infrastructures	Wastes	Collecting waste,	н	н	н	н	
			recycling resources				11	
			Using energy (bio gas),	М	м	L	н	
			using sewage sludge	111	IVI	L	11	
		Water supply /	Re-using treated waste					
		sewage	water	н	н	М	L	
			Using rainwater, storage			111		
			Pump efficiency					
		Reducing pollution	Treating exhausts,					
		c	contaminated soils	µ	Ц	н	н	
			(Treating waste water is	НН				
			included in sewage.)					

Note 1) H: Potentially highly effective M: Potentially effective

L: Potentially less effective or difficult to apply X: Not effective at all or unlikely to apply

*EMS=Energy Management System

BEMS=Building Energy Management System

HEMS=Home Energy Management System

FEMS=Factory Energy Management System

Note 2) Type of Towns I Urban (Central Business District: (CBD)) II Urban (Commercial/Industrial Oriented Town) III Urban (Residential Oriented Town) IV Rural

	Classification of Me	easures		Арр	olicat	oility a	as	
Supply /	Major	Minor	Low-carbon Measure		Туре			Case
Supply / demand	Major Classification	Minor Classification	Low-carbon measure	Точ	vn ^{No}	te 1)		
demand	Classification	Classification		I		=	IV	No.
Demand	Transportation system	Public transportation	Public transportation network	м	М	М	L	(19)
		systems	Intra-district transportation system (busses, LRT, etc.)	н	Н	Н	L	(20)
	Short-distanceIntra-city communitytransportationbicycle (and electric bike)		н	н	н	L	(23)	
		systems	Short-distance transportation system	н	Н	Н	L	
		Vehicles	Electrically driven vehicle	М	М	М	М	(21) (29)
			EV bus	М	М	М	М	(22)
			Natural gas-driven vehicles, etc.	м	М	М	М	
		EV-related hardware	Fast charger, small battery	М	М	М	М	
Both supply and demand	Management	Energy management systems(EMS)*	Energy monitoring, diagnostic and management systems, BEMS *(HEMS, FEMS)	н	Н	Н	Н	
			Zero Energy Building(ZEB)	М	М	н	Н	
			Area EMS	н	н	Н	Н	(26)
	Smart grid system (mainly for electric	Power control systems	Power monitoring control system	н	н	М	L	
	power system)		Power stabilization system	Н	Н	М	L	
		Network	Network infrastructures	н	Н	М	L	(28)
			Network-related					. ,
			technology, communication modules, measuring systems, etc.	н	Н	М	L	
	Smart energy system (energy integration)		Smart energy system	Н	Н	М	L	(24)

Note 1): H: Potentially highly effective M: Potentially effective

L: Potentially less effective or difficult to apply X: Not effective at all or unlikely to apply

*EMS=Energy Management System

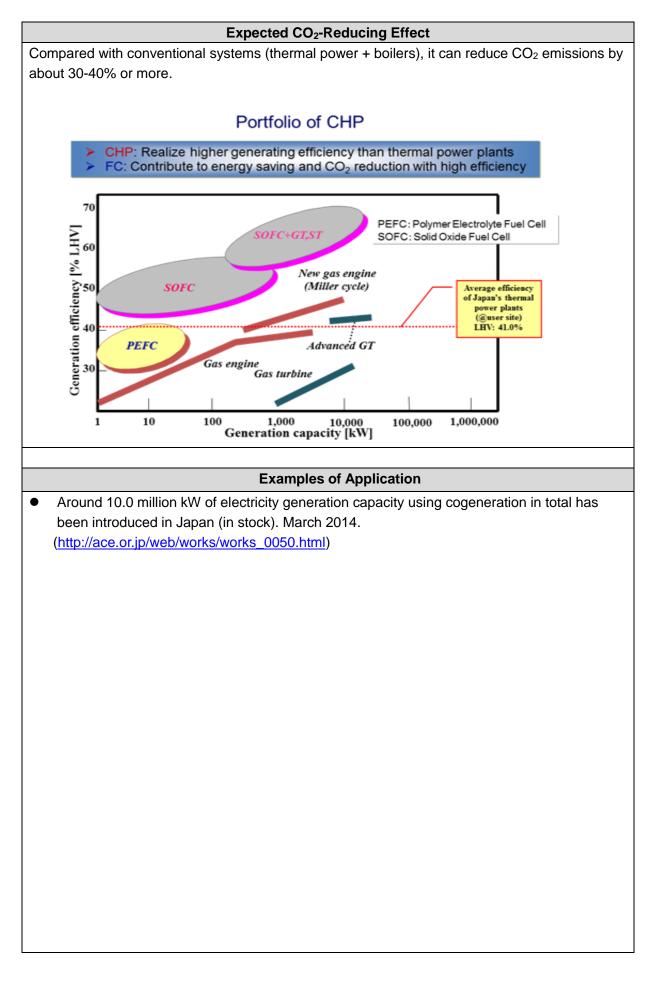
BEMS=Building Energy Management System

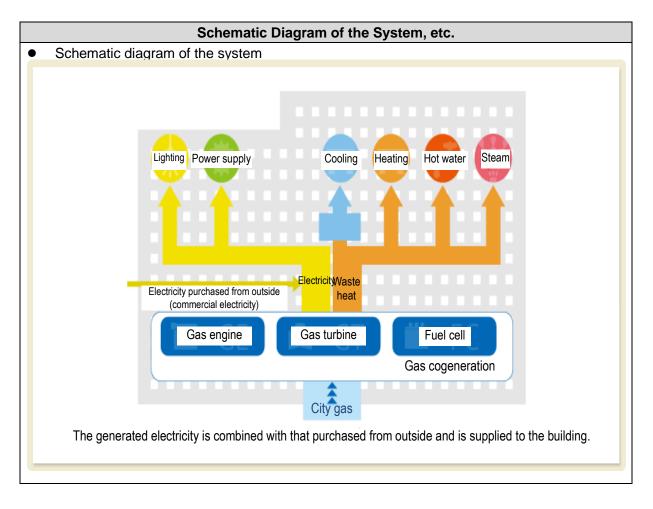
HEMS=Home Energy Management System FEMS=Factory Energy Management System

	Classification of Me	asures		Арр	olicab	oility a	as	
Supply /	Major	Minor	Low-carbon Measure	per Type of Town ^{Note 1)}				Case
demand	Classification	Classification		Ι	Ш	III	IV	No.
Supply	Generating / distributing power	Infrastructures for generating/ storing power	Distributed power facility– rooftop PV, storage suits III and IV too	М	М	L	L	
			Cogeneration system	Н	Н	L	L	(1)
			Large-scale power storage, etc. may be located in III or IV for exports	М	М	L	L	
	District energy (heat supply)	District heating / cooling		н	н	М	L	(3)
	Untapped energy	Using sea/river/sewa	age water	н	н	М	L	(2)
		Using waste heat fro	m waste incineration plants	н	Н	М	М	(12)
		Using waste heat fro	m sewage treatment plants	н	н	М	L	(10)
		Using waste heat fro	m factories	М	М	М	х	
	Renewable energy	Solar power generation (mega solar power generation)		М	М	М	М	(13)
		Using solar heat (lar	ge-scale solar heat)	М	М	М	М	(14)
		Biomass power generation (biogas power generation, etc.)		L	L	L	М	(15) (25)
		Wind power generati	on	L	L	L	Н	(17)
		Geo-thermal power of	generation	L	L	L	М	(16)
		Hydroelectric powe middle-scale)	r generation (small- and	L	L	L	М	(11)

Note 1): H: Potentially highly effective M: Potentially effective

L: Potentially less effective or difficult to apply X: Not effective at all or unlikely to apply


2. Low-Carbon Measures with Case Examples


Cl	assification of N	leasures	Low-carbon Measure	Applicability as per Type of Town					
Demand/	Major		I	П	Ш	IV			
Supply	Classification	Classification							
Supply	Generating/	Infrastructures	Cogeneration	н	н	L	L		
	distributing	for generating/	System(CHP)						
	power	storing power							
	•	Overview of Me	asures and Applicat	oility					
Coger	neration is a syste	em that generates	electricity onsite when	re neede	ed and				
simult	aneously makes	efficient use of ger	nerated heat for space	e heatin	g, coolir	ng, hot-v	water		
supply, steam, etc. Sometimes cogeneration is called combined heat and power or, when									
,		0	ower, 'trigeneration'.		·				
	• •	•	ation for a variety of a	reas and	d syster	ns that u	use		
0		0 11							

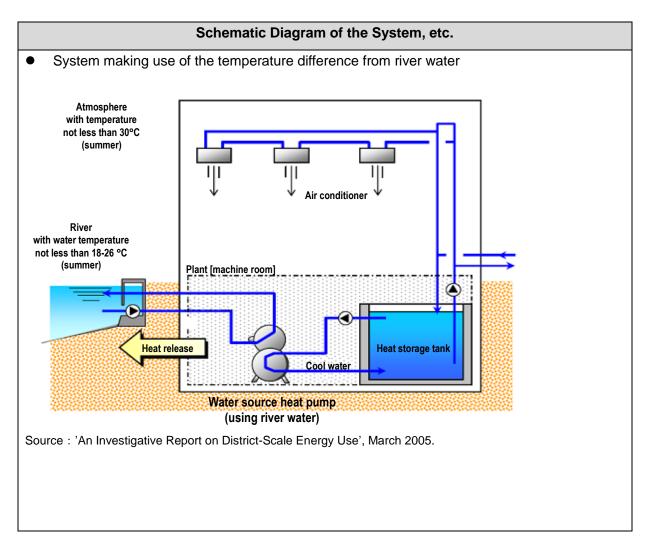
(1) Cogeneration System/Combined Heat and Power/Trigeneration

Cogeneration has a wide range of application for a variety of areas and systems that use heat, including those for households/businesses, industries, large cities, middle cities, farming villages, etc., as well as district cooling/heating (district-scale use) and smart energy systems. As for its application in farming villages, there are cases where this system is used as in trigeneration using electricity, heat and CO₂ for greenhouse cultivation. Cogeneration can work in tandem with renewable energy to provide back-up power. Operated with reliable fuel supply, such as middle-pressure city gas pipelines, cogeneration can contribute to the users' 'Business and Living Continuity Plan'* as emergency power and heat supply systems.

* See more at the website of the Centre for the Protection of National Infrastructure http://www.cpni.gov.uk/Security-Planning/Business-continuity-plan/

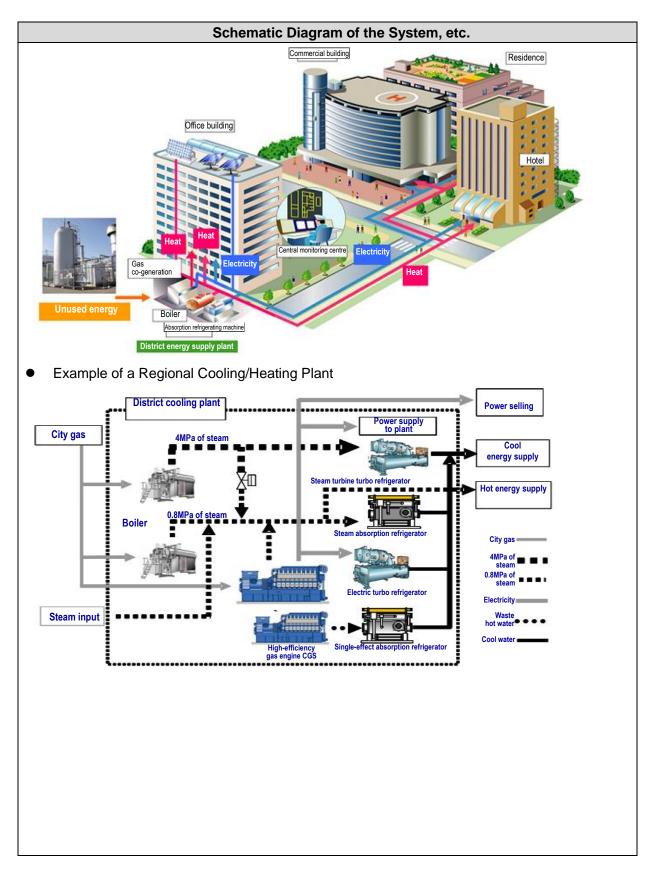
(2) Using Sea/River Water

Classifica	tion of Measure	S	Low-carbon	Applicability as per			r			
			Measure	Type of Town						
Demand/ Major Minor				I	Ш	III	IV			
Supply	Classification	Classification								
Supply	Untapped		Using sea/	н	н	М	L			
energy river water										
Overview of Measures and Applicability										
• As sea/river water temperature is stable and is lower in summer and higher in winter than										
the at	the atmospheric temperature, it will contribute to improving energy efficiency, both as a									
coolar	nt of heat pumps	used in heat-sou	irce equipment for	cooling	and as I	heat-sour	ce water			


- the atmospheric temperature, it will contribute to improving energy efficiency, both as a coolant of heat pumps used in heat-source equipment for cooling, and as heat-source water for heat pumps for heating/hot-water supply. Heat pump efficiency is improved as the temperature difference between condenser and evaporator is reduced.
- As the use of seawater requires countermeasures for salt damage to equipment and for marine organisms and the use of river water requires drought management measures, etc., it is a common practice to combine the use of sea/river water with large-scale facilities, such as district heat-supply systems.

Expected CO₂-Reducing Effect

• It is expected that CO₂ will be reduced through improving energy efficiency in cooling/heating and hot-water supply in the relevant communities.


Examples of Application

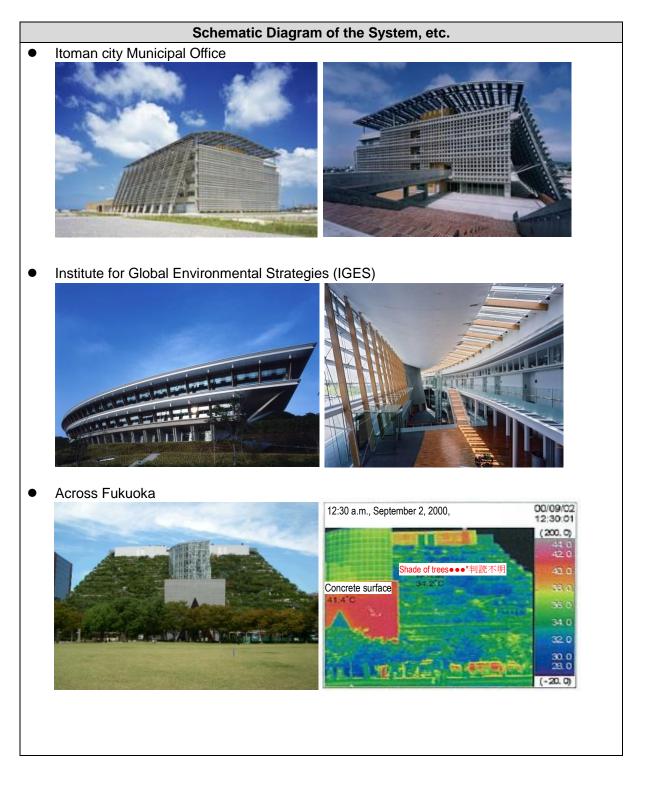
- Examples of applications for river-water temperature: Hakozaki (Tokyo), north area of Toyama Station (Toyama), Nakanoshima (Osaka), Temmabashi (Osaka), Ohkawabata River City (Tokyo) in Japan and ANZ Bank HQ (Melbourne) in Australia
- Examples of applications for sea-water temperature: Chubu Centrair International Airport (Aichi), Osaka Cosmosquare (Osaka), Sunport Takamatsu (Kagawa), Seaside Momochi Beach Park (Fukuoka)
- There is less of a record of new operation result recently.
- The construction cost tends to be high because of large-scale construction work.

(3) District Heating and Cooling (DHC)

	Classification of Measures			Low- carbon		licability e of Town	-	
Supply District energy (heat supply) District heating and cooling (DHC) H M L Overview of Measures and Applicability It connects multi-purpose buildings in certain urban districts via a thermal pipeline netwo and supplies cooling/heating media from district energy supply plants in an efficient mann By means of this system, the area receives not only energy-savings, but also a variety of benefits, such as energy security, labour savings, efficient use of building spaces, pollutio abatement, reduction of urban heat-island effect, prevention of urban disasters, etc. It also contributes to effective use of unused thermal energy in urban areas, such the use waste heat from incineration plants. Care must be taken to minimise pipe losses and pumping energy. Requires strong district policy. Expected CO ₂ -Reducing Effect Compared with individual (heat source) systems, primary energy consumption can be reduced by 10%-14% *subject to climate. Further reduction of energy consumption (by n less than 20%) can be realised by utilising unused energy, contributing to a significant reduction of CO ₂ . * 'District-Scale Utilisation of Unused Energy - the Current Status of Heat Supply and the Direction towat the Next Generation', Ministry of Economy, Trade and Industry. March 2008. Examples of Application Shinjuku Sub-center, Marunouchi District, Roppongi Hills, Tokyo, Osaka Senri New Town Chuo District, etc. Vancouver's Neighbourhood Energy Utility http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd		-		-	1		1	IV
 It connects multi-purpose buildings in certain urban districts via a thermal pipeline netwoi and supplies cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling/heating media from district energy supply plants in an efficient maninal symples cooling system, primary energy constructs and the use waste heat from incineration plants. Care must be taken to minimise pipe losses and pumping energy. Requires strong district policy. Expected CO₂-Reducing Effect Compared with individual (heat source) systems, primary energy consumption can be reduced by 10%-14% * subject to climate. Further reduction of energy consumption (by n less than 20%) can be realised by utilising unused energy, contributing to a significant reduction of CO₂. * 'District-Scale Utilisation of Unused Energy - the Current Status of Heat Supply and the Direction toware the Next Generation', Ministry of Economy, Trade and Industry. March 2008. Examples of Application Shinjuku Sub-center, Marunouchi District, Roppongi Hills, Tok		District energy		heating and cooling		Н	M	L
 and supplies cooling/heating media from district energy supply plants in an efficient mannels means of this system, the area receives not only energy-savings, but also a variety of benefits, such as energy security, labour savings, efficient use of building spaces, pollutic abatement, reduction of urban heat-island effect, prevention of urban disasters, etc. It also contributes to effective use of unused thermal energy in urban areas, such the use waste heat from incineration plants. Care must be taken to minimise pipe losses and pumping energy. Requires strong district policy. Expected CO₂-Reducing Effect Compared with individual (heat source) systems, primary energy consumption can be reduced by 10%-14% * subject to climate. Further reduction of energy consumption (by n less than 20%) can be realised by utilising unused energy, contributing to a significant reduction of CO₂. * 'District-Scale Utilisation of Unused Energy - the Current Status of Heat Supply and the Direction towathe Next Generation', Ministry of Economy, Trade and Industry. March 2008. Examples of Application Shinjuku Sub-center, Marunouchi District, Roppongi Hills, Tokyo, Osaka Senri New Town Chuo District, etc. Vancouver's Neighbourhood Energy Utility http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd 		(Overview of Mea	sures and Ap	plicabilit	у		
 Compared with individual (heat source) systems, primary energy consumption can be reduced by 10%-14% * subject to climate. Further reduction of energy consumption (by n less than 20%) can be realised by utilising unused energy, contributing to a significant reduction of CO₂. * 'District-Scale Utilisation of Unused Energy - the Current Status of Heat Supply and the Direction towa the Next Generation', Ministry of Economy, Trade and Industry. March 2008. Examples of Application Shinjuku Sub-center, Marunouchi District, Roppongi Hills, Tokyo, Osaka Senri New Town Chuo District, etc. Vancouver's Neighbourhood Energy Utility http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd 	 By mean benefits, abateme It also co waste he Care mu 	ns of this system, such as energy s ent, reduction of u pontributes to effect eat from incinerations the taken to min	the area receives security, labour sa rban heat-island tive use of unuse on plants. nimise pipe losse	s not only ener avings, efficien effect, prevent ed thermal ene	gy-saving it use of b ion of urb rgy in urb	is, but also uilding sp an disaste	o a vari aces, p ers, etc.	ety of co ollution-
 reduced by 10%-14%* subject to climate. Further reduction of energy consumption (by n less than 20%) can be realised by utilising unused energy, contributing to a significant reduction of CO₂. * 'District-Scale Utilisation of Unused Energy - the Current Status of Heat Supply and the Direction towa the Next Generation', Ministry of Economy, Trade and Industry. March 2008. Examples of Application Shinjuku Sub-center, Marunouchi District, Roppongi Hills, Tokyo, Osaka Senri New Town Chuo District, etc. Vancouver's Neighbourhood Energy Utility http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd 			Expected C	O ₂ -Reducing I	Effect			
 Shinjuku Sub-center, Marunouchi District, Roppongi Hills, Tokyo, Osaka Senri New Town Chuo District, etc. Vancouver's Neighbourhood Energy Utility http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd 	reduced less thar reduction * 'District-	by 10%-14%*sul n 20%) can be re n of CO ₂ . Scale Utilisation of L	bject to climate. F alised by utilising Jnused Energy - the	Further reduction of unused energy Current Status of	on of ener gy, contrib of Heat Sup	rgy consu outing to a oply and the	mption signific	(by not ant
 Osaka Senri New Town Chuo District, etc. Vancouver's Neighbourhood Energy Utility <u>http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd</u> 			•	• •				
http://vancouver.ca/docs/planning/renewable-energy-neighbourhood-utility-factsheet.pd	•			Roppongi Hills	, Tokyo,			
 James Cook University, Queensland, Australia – district cooling on campus 		0	0, ,		ghbourhoo	od-utility-fa	actshee	et.pd
	 James C 	Cook University, Q	ueensland, Austr	ralia – district c	cooling on	campus		

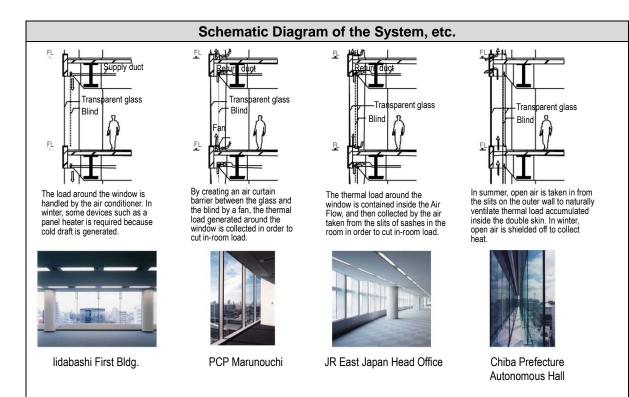
Classificati	on of Measu	es	Low-carbon	Applicability as per						
			Measure	Type of Town						
Demand/ Major Minor			1	Ш	III	IV				
Supply	Classification	Classification								
Demand	Building	Reducing load	Sunlight reflection,	Н	Н	Н	н			
			shading and							
			thermal							
			insulation							
	Overview of Measures and Applicability									

(4) Sunlight Reflection, Shading and Thermal Insulation


- Insulation reduces heat flow through building envelope.
- Solar radiation reaching a building's rooftop is converted into heat, which causes higher room temperatures and rising air-conditioning costs. Thus, applying high solar-reflectance paint for roof surfaces prior to the conversion of solar radiation into heat is effective in controlling rising room temperatures and lowering air-conditioning energy requirements. The same measure is similarly effective for roads and sidewalks and the rooves of public transport vehicles (e.g., buses, trains and trams).
- Sunlight shading is very effective in reducing thermal load entering a building. As the solar elevation changes according to its bearing, the type of suitable eaves or blinds also varies. In planning sunlight shading, it is necessary to take the building exterior into account so that sunlight will be effectively shaded.
- Shutting off sunlight on the outer side of a building is more effective. External blinds installed on the outer side of a building helps to reduce the thermal load. They serve to adjust natural lighting when the blinds are designed to change their angles automatically according to the solar elevation.
- Planting vegetation around a building cuts direct sunlight off from the concrete surface and takes effect on controlling the rise in the air temperature around the building because of evapo-transpiration effect.
- Air leakage can be a major contributor to energy waste, especially in strong winds.

Expected CO₂-Reducing Effect

 Power consumption cuts are expected due to the reduction of air conditioning load owing to the lowered temperature inside the building and natural lighting. As a result, it reduces CO₂ emissions and peak energy demand.


Examples of Application

- Itoman city Municipal Office, Institute for Global Environmental Strategies (IGES) Main Office Building, Across Fukuoka (Commercial-Office-Cultural Complex)
- Public Works Department HQ, Jakarta (around 90 kWh/square metre/year in hot humid climate)

(5) Façade Engineering

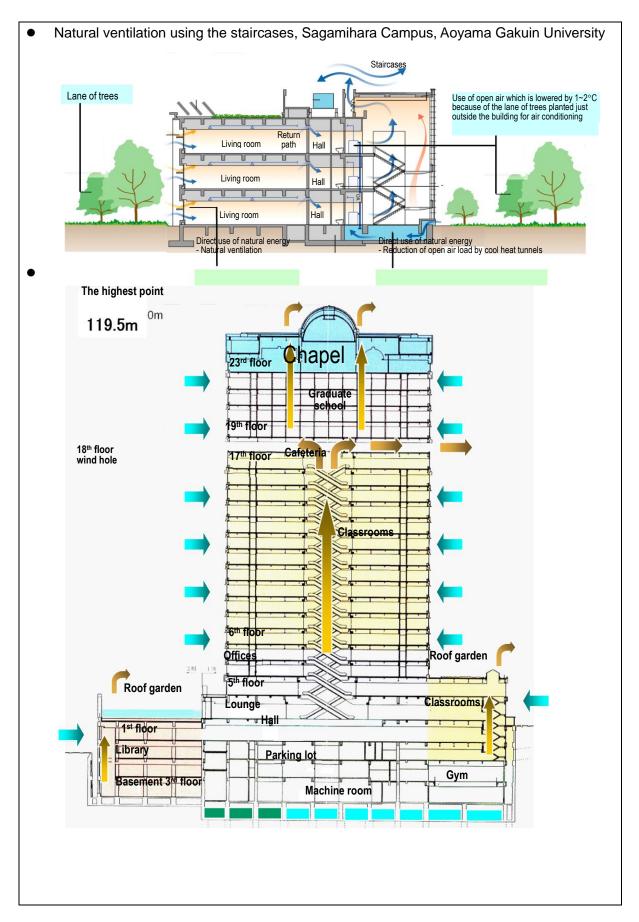
	n of Measure	S	Low-carbon Measure		-	Applicability as per Type of Town				
Demand/ Supply	Major Classification	Minor Classification		1	II	III	IV			
Demand	Buildings	Reducing heat load	Façade engineering	Н	н	М	L			
		Overview of M	easures and Ap	plicability	/					
 The imporglazing) of coating for enhance One of a environmental layer in 	ortant compon- containing air or blocking rac indoor enviror dvanced appro- nent nearby the side the doubl	ent is high-perfor space between to diant heat from tra nmental performa bach is the "air flo e windows. The a le-layered glass o	window and oute mance glass, suc wo pieces of glas aveling through. T ance around the w ow windows". The air flow windows of equipped with a b e inside and outsi	ch as the s and low These typ windows. ey improv creates a puilt-in blir	duplex gl r-e glass es of glas e the thei kind of ve nd and av	ass (do with spe ss also mal ertical a	uble ecific irflow			
● The simu	ulation has cor	-	D₂-Reducing Eff ere result the pea		the perim	eter an	d			
		•	ass only and low		•					
		•	us low-e glass cu	-	-					
-		-	ermal load will be d exposure to sur		annually	. The po	otential			
UT IDAU TE				1.						
		Examples	s of Application							
- 110a0a511	n nət bullulı İğ	in Tokyo, Japan,	510.							

Classifica	Classification of Measures			Applicability as per Type of Town							
Demand/ Supply	Major Classification	Minor Classification		I	II	III	IV				
Demand	Buildings	Passive energy design & equipment	Natural ventilation	Η	Η	Η	Η				
	Overview of Measures and Applicability										

(6) Natural Ventilation

• The mid-term air-conditioning energy can be reduced by planning to take natural wind into rooms, for instance by installing apertures or opening-closing windows effectively or natural ventilation voids inside the building.

- The void enables natural air flow even during calm conditions. (The natural ventilation by the difference in temperatures between tops and bottoms.) Moreover, natural ventilation can be effectively obtained no matter which direction the wind blows. (The wind shielding board prompts natural ventilation as a negative pressure zone is created when the wind flows through the upper part). Example: Meiji University Liberty Tower (second figure).
- Natural ventilation using staircases can also produce the same effect as installing natural ventilation voids and wind shielding boards. (When air is calm, ventilation is enabled naturally by the difference in temperatures between upper and lower part of the staircases. When a wind shielding board is mounted on the top, a negative pressure zone is created as the wind passes through the upper part, thereby allowing natural ventilation free of the wind direction. (Bottom figure)
- Care is needed if outdoor air is polluted or if the noise level is high. Fire risk must be managed. Also if the ventilation system leads to increased uncontrolled leakage of air when the building is being heated or cooled, savings can be offset by waste. As fan efficiencies improve and cost of onsite renewable energy generation reduces, the use of powered ventilation can be easier and cheaper overall as complexity of building envelope can be reduced.

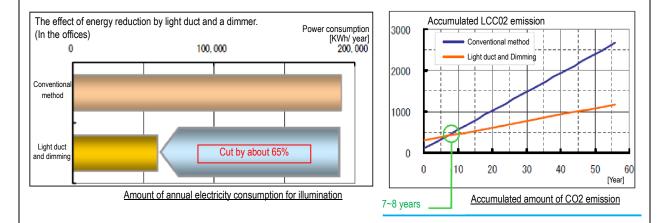

Expected CO₂-Reducing Effect

• Air-conditioning load can be reduced.

Examples of Application

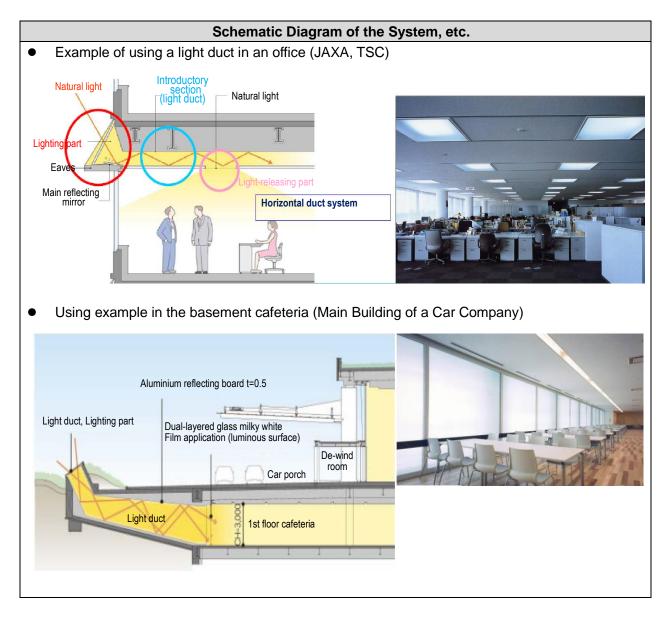
• Meiji University Liberty Tower, Tokyo, Japan

Schematic Diagram of the System, etc.


(7) Daylight Use Plus Lighting System

Classifica	tion of Measure	S	Low-carbon	Applicability as per			s per
		Measure	Ту	Type of Town			
Demand/	Major	Minor		I	II	III	IV
Supply	Classification	Classification					
Demand	Building	Passive energy	Daylight use,	Н	Н	Н	н
		design &	lighting system				
		equipment					
		Overview of Meas	sures and Applicabi	ility			

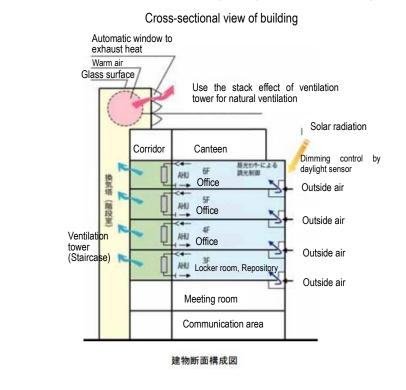
• The light from the window is limited in its reach, or no lighting is available if there is no window in the room. However, natural light reach the darker areas in the building through a light duct or light shelf. The illustrations given below show the system of a light duct using an aluminium mirror with 95% reflectivity of visible light for its interior in order to transport light from the light-collecting part to the light-releasing part.


Expected CO₂-Reducing Effect

• The system of using light ducts shown below is effective in cutting the annual lighting electricity consumption by approximately 65% over the conventional systems. It is noted that the Life Cycle (LC) CO₂ can be recovered in 7 to 8 years.

Examples of Application

• Japan Aerospace Exploration Agency (JAXA), Tsukuba Space Center (TSC), Toyota Motor Corporation Office Main Building



Classification of Measures		Low-carbon	Applicability as per			per	
		Measure	Type of Town				
Demand/	Major	Minor		I	II	III	IV
Supply	Classification	Classification					
Demand	Building	Passive energy design & equipment	Hybrid of natural ventilation plus air conditioning	н	Н	Μ	L
Overview of Measures and Applicability							

(8) Hybrid of Natural Ventilation Plus Air Conditioning

• As an air conditioning facility system is incorporated into a building, it is a hybrid air conditioning system, which combines three types of air conditioning systems: air current feeding by the ceiling fan, floor blow-out air conditioning and natural ventilation.

- A ceiling fan generates gentle air current by stirring a large amount of wind with less electricity. It can realize a comfortable space at 28°C even in summer.
- Very high-efficiency ceiling fans are now becoming available: otherwise large numbers of fans can consume a surprisingly large amount of energy.

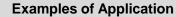
Expected CO₂-Reducing Effect

• Air conditioning load can be reduced by making natural ventilation the principal approach. Further CO₂ reduction can be expected by employing a human sensor or an automatic light dimmer for making the best of daytime light along with natural ventilation.

Examples of Application

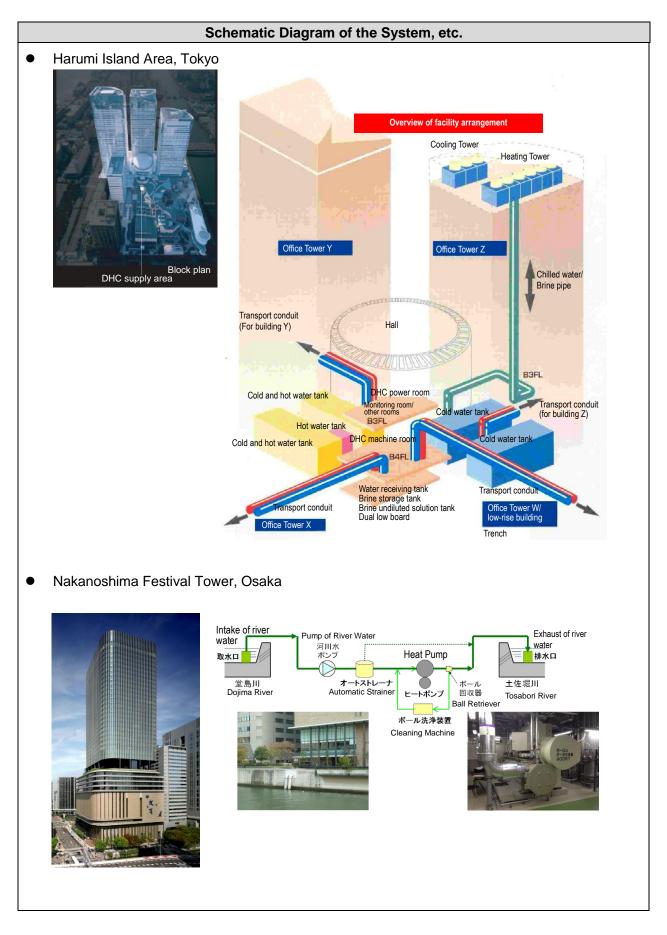
• Sakai Gas Building, Osaka, Japan

Classification of Measures		Low-carbon Measure	Applicability as per Type of Town				
Demand/ Supply	Major Classification	Minor Classification		I	II	III	IV
Demand	Building	High-efficient Facility systems	High-efficient heat source plus heat storage	Η	Η	L	L


(9) High-efficient Heat or Cooling Source Plus Thermal Storage

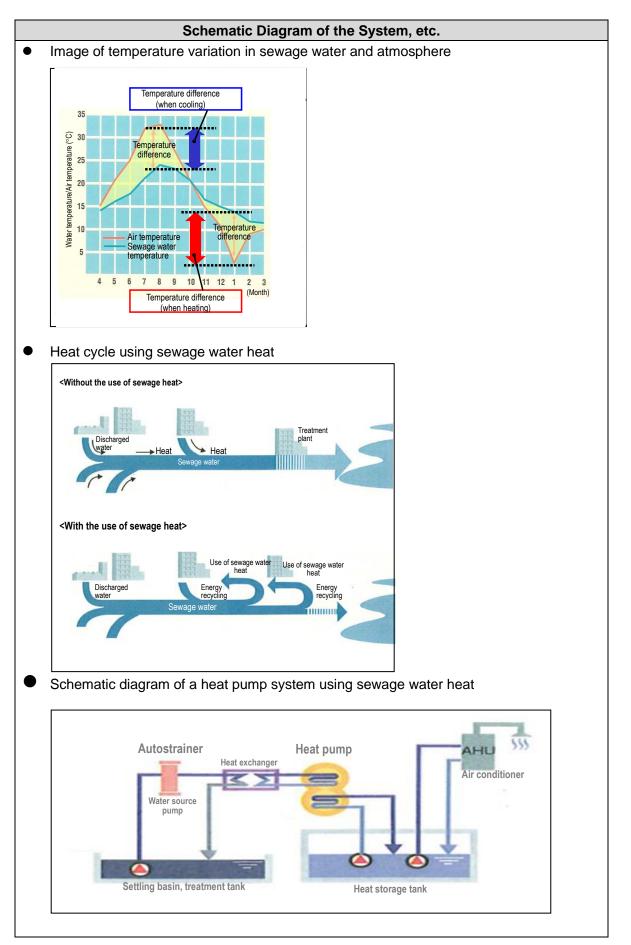
In an intensive and high-density district development on a large scale, a system of generating cold/hot water and steam at the central plant in the district and supplying them to individual buildings can contribute to the realisation of a low-carbon society by making the best of scale merit. However, it is important to minimise pumping energy and heat transfer to and from pipes to avoid undermining overall efficiency, especially in milder climates and where buildings are very energy efficient.

- The central plant in the district is divided into three categories:
 - 1) Electricity system: a system of generating cold and hot water by using turbo chillers, heat pump chillers, etc.
 - 2) Gas system: a system of generating cold water and steam by gas-absorption chillers or steam-absorption chillers using co-generated (CHP) steam exhaust heat.
 - 3) Electricity/gas combination system: a system of generating cold water, steam (hot water) by combining 1) electric heat source and 2) gas heat source.
- There are systems that combine one of the above-mentioned systems with untapped energies, such as river water, sewage heat and exhaust heat from waste incineration plants.


Expected CO₂-Reducing Effect

- The use of highly efficient district air conditioning and heating allows the reduction of air conditioning load, which is expected to reduce CO₂ emissions significantly.
- Furthermore, the reduction of energy cost can be expected by storing heat energy in thermal storage tanks with the use of night time electricity.

Examples of Application Harumi Island, Triton Square, Tokyo Japan, Nakanoshima Festival Tower, Osaka, Japan •

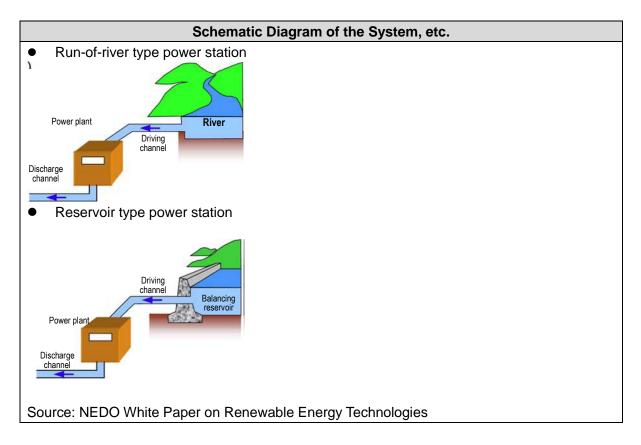


Classificati	on of Measure	ge freatmen s	Low-carbon	Appl	icabil	ity as	per				
		-	Measure	Type of Tow		-	P • ·				
Demand/	Major	Minor		I	II	III	IV				
Supply	Classification	Classification									
Supply	Untapped	Using	Using waste heat from	Н	Н	М	L				
	energy	waste heat	sewage treatment plant								
	Overview of Measures and Applicability										
 atmospl coolant water fo Using si a recycl It is nec heat loa conditio interfusi period a Moreovi water qu water. 	 As sewage water temperature is lower in summer and higher in winter than the atmospheric temperature, it will contribute to improving energy efficiency both as a coolant of heat pumps used in heat source equipment for cooling and as heat-source water for heat pumps for heating/hot-water supply. Using sewage water heat means the reuse of city waste heat, and it may be regarded as a recycling-oriented city energy system. It is necessary to pay attention to the balance between the heat-supply source and the heat load from cooling/heating, as well as hot-water supply, considering such regional conditions as the amount of sewage water, daily/seasonal variations in temperature and interfusion of snow-melt water. In addition, as heat demand also varies in terms of time period and season, this variation should be reduced by installing heat storage tanks. Moreover, it requires corrosion-resistant treatment of the related equipment based on the water quality, as well as strainers for removing foreign matters contained in the sewage water. Considering the above, using waste heat system should be carefully designed in 										
		Expecte	d CO ₂ Reducing Effect								
•			ed by means of improving energy in the relevant communities.	•••	ficienc	cy in					
		Examp	les of Application								
inside a	nd outside of w	astewater trea	or sewage water temperature atment plants in Japan (as of rature are desirable, because	Feb 2	014).	These					

(10) Waste Heat from Sewage Treatment Plant

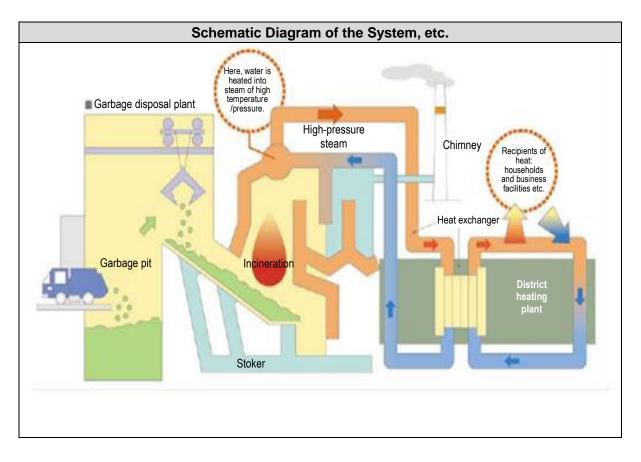
Classification of Measures		Low-carbon	Applicability as per					
			Measure	Type of Town				
Demand/	Major	Minor		1	I	III	IV	
Supply	Classification	Classification						
Supply	Renewable		Hydroelectric	L	L	L	М	
	energy		power generation					
			(small and mid-					
			scale)					
Overview of Measures and Applicability								
• Small and mid-scale hydroelectric power generation generally make use of water without								
storing it. Depending on the method of water use and the structure for gaining a head of								
water, several forms exist.								
• Small and mid-scale hydro power generation carries a heavy burden of electrical								
equipment costs. It takes a greater share of the total construction cost in comparison to								
large-scale hydroelectric power generation.								

(11) Hydroelectric Power Generation


- In addition to the systems utilising nearby rivers, the cases can be assumed where hydroelectric power generation systems are installed as a form of agricultural drainage facility in farming villages.
- Small hydroelectric power generation can also take advantage of existing infrastructure, such as water-supply dams or water-supply pipes that are running downhill.
- 'Pumped hydro' where water is pumped uphill to a storage dam when excess cheap energy is available, then generates electricity when it is needed, can be a low cost storage option. Instead of a lower dam, the sea or a lake can be used to reduce costs
- Low-cost technologies can reduce the capital costs of small hydroelectric power generation. For example, in Palmerston North, New Zealand, a pump that 'runs backwards' to generate electricity was installed on the local water-supply dam. Although this is about 30% less efficient than a purpose-designed hydroelectric unit, it was much cheaper to install.

Expected CO₂-Reducing Effect

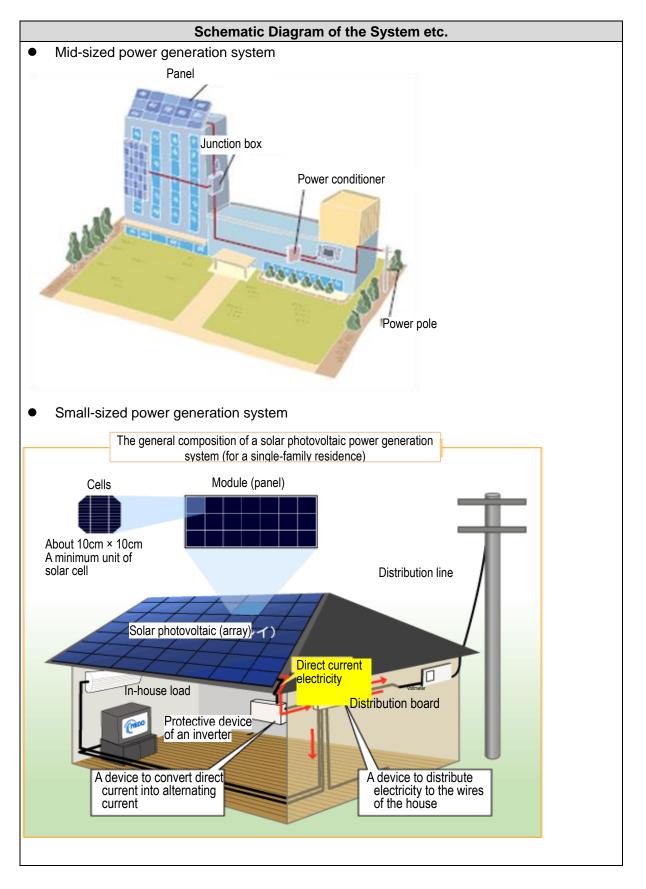
 It is expected that CO₂ will be reduced by means of increasing electricity generation from renewable sources. Pumped storage allows renewable energy to contribute a larger proportion of electricity demand by providing hydroelectric power generation at times when other renewable sources are not available and by storing excess renewable energy.


Examples of Application

- Palmerston, North New Zealand (Ralph Sims) low cost hydroelectric unit installed on local water-supply dam.
- Melbourne Water (Australia) has installed mini-hydroelectric units in water-supply pipes between dams and consumers.
- In some developing countries, farmers use very small 'run of river' hydroelectric generators driven by water flow rather than vertical head that can be easily moved to avoid floods.

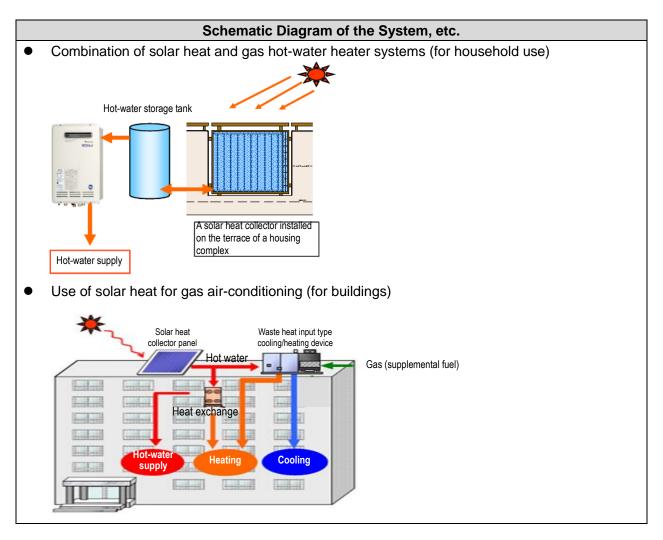
Classification of Measures		Low-carbon Measure	Applicability as per Type of Town						
Demand/	Major	Minor		I II III IV					
Supply	Classification	Classification							
Supply	Untapped		Using waste heat from	н	н	М	М		
	energy		incineration plants						
			asures and Applicability						
 The exhaust gas from refuse incineration at garbage disposal facilities has a high temperature, and it can be utilised for power generation and as an infrastructure for heat supply. As garbage disposal facilities are often built away from residential areas, it is necessary to develop a plan that facilitates heat use on the basis of garbage disposal facilities as an infrastructure for energy supply. Local community concerns about air pollution can undermine support for this technology unless implementation is carefully managed. In many developing countries, this can significantly improve local air quality, odours and health relative to existing waste management practices. 									
		•	CO ₂ -Reducing Effect						
 heat. Note that where plastic, tyres and other wastes that do not decay in landfills, net greenhouse gas emissions relative to landfill may be small coming from materials produced from the burning of fossil fuels. However, where it replaces open burning of waste or simple incineration, it provides zero-emission energy and significant environmental and health benefits. 									
		Example	es of Application						
The hea turbines appliand centres In addit other he Norther compar	e; the power ge ces, air-conditio for the elderly). ion to using the eat-utilising facil n and Southern ies. The amou	ity ring the incinera enerated is use ning and heat-u e electricity ger ities, as well as n Area Sewera nt sold in 2011	ation process is converted to d for operating various pla utilising facilities (heated swi herated within the plants, th the Northern Area Water Re ge Centers. The city also was equivalent to the amou f Isogo-ku) use over the cou	nt cor mming ne city ecyclir sells e unt app	npone g pools also s ng Cen electric proxim	nts, si s and v supplie iter II a city to nately	uch as welfare es it to and the power		

(12) Waste Heat from Incineration Plants


(13) Solar Power Generation

Classification of Measures			Low-carbon Measure		licability e of Tow	-	er
Demand/	Major	Minor		I	II	III	IV
Supply	Classification	Classification					
Supply	Renewable		Solar power	Μ	М	М	м
	energy		generation				
			sures and Appli	-			
• •		-	newable energy	-		•	
	s the climate co	nditions and ad	Iministrative supp	ort meas	ures in th	e relev	/ant
regions.							
•	•	•	a collective term f		•	-	-)
		• •	into electricity. Se				s) can be
	••	•	ne silicon, thin filr neration ranges fi				oporation
	•		generation syster	0		•	
use.	to mid- and sma	all-sized power	generation syster		lustry and	1 nous	enolu
	d with other rer	ewable energy	power generation	n system	s this sv	stem h	as an
•		0,	lation and mainte	•			
•			e highest introduc				
			es with retail elec		•		-
•		-	so it can often be	•••			
•		• •	apidly. In areas w		•		
-	•	•	gy supply option.				
-	-		demand manager				r , ,
	•••	•	ower cables can b		-		`
• •			cks, traffic lights,				7
pumps.						, imga	
	amount of ener				<u>-</u> g	, imga	
this syste	amount of cher	gy output can b	be expected wher	e solar in	-	-	tion and
		•••	be expected wher n solar heat powe		sulation	s obta	tion and ined, and
generatio		•••	•		sulation	s obta	tion and ined, and
generatic	em has a wider a	•••	•		sulation	s obta	tion and ined, and
generatic	em has a wider a	applicability tha	•	er genera	sulation	s obta	tion and ined, and
	em has a wider a on systems.	Expected	n solar heat powe	er genera	sulation i tion or w	ind pov	tion and ined, and wer
	em has a wider a on systems.	Expected Fill be reduced b	n solar heat powe	er genera	sulation i tion or w	ind pov	tion and ined, and wer
 It is expe 	em has a wider a on systems. octed that CO ₂ w	Expected vill be reduced b	n solar heat powe CO₂ Reducing E by replacing fossil	er genera	sulation i tion or w	ind pov	tion and ined, and wer
 It is expe 	em has a wider a on systems. octed that CO ₂ w	Expected vill be reduced b	n solar heat powe CO₂ Reducing E by replacing fossi s of Application	er genera	sulation i tion or w	ind pov	tion and ined, and wer
 It is expe Example Mito Nev 	em has a wider a on systems. Incted that CO ₂ w of Solar Power vtown Mega So	Expected will be reduced to Examples Generation (Generation and the second seco	n solar heat powe CO ₂ Reducing E by replacing fossil s of Application round Mounted) n Renewable Ene	er genera Effect I fuel use	sulation i tion or w with sola	ind pov	tion and ined, and wer
 It is expe Example Mito Nev Location: 	em has a wider a on systems. Incted that CO ₂ w of Solar Power vtown Mega So	Expected rill be reduced to Example: Generation (Gi Diar Park, Japa ski Prefecture, J	n solar heat powe CO ₂ Reducing E by replacing fossil s of Application round Mounted) n Renewable Ene	er genera Effect I fuel use	sulation i tion or w with sola	ind pov	tion and ined, and wer
 It is expe Example Mito Nev Location: 	em has a wider a on systems. Incted that CO ₂ w of Solar Power vtown Mega So	Expected rill be reduced to Example: Generation (Gi Diar Park, Japa ski Prefecture, J	n solar heat powe CO ₂ Reducing E by replacing fossil s of Application round Mounted) n Renewable Ene	er genera Effect I fuel use	sulation i tion or w with sola	ind pov	tion and ined, and wer
 It is expe Example Mito Nev Location: 	em has a wider a on systems. Incted that CO ₂ w of Solar Power vtown Mega So	Expected rill be reduced to Example: Generation (Gi Diar Park, Japa ski Prefecture, J	n solar heat powe CO ₂ Reducing E by replacing fossil s of Application round Mounted) n Renewable Ene	er genera Effect I fuel use	sulation i tion or w with sola	ind pov	tion and ined, and wer
 It is expe Example Mito Nev Location: 	em has a wider a on systems. Incted that CO ₂ w of Solar Power vtown Mega So	Expected rill be reduced to Example: Generation (Gi Diar Park, Japa ski Prefecture, J	n solar heat powe CO ₂ Reducing E by replacing fossil s of Application round Mounted) n Renewable Ene	er genera Effect I fuel use	sulation i tion or w with sola	ind pov	tion and ined, and wer
 It is expe Example Mito Nev Location: 	em has a wider a on systems. Incted that CO ₂ w of Solar Power vtown Mega So	Expected rill be reduced to Example: Generation (Gi Diar Park, Japa ski Prefecture, J	n solar heat powe CO ₂ Reducing E by replacing fossil s of Application round Mounted) n Renewable Ene	er genera Effect I fuel use	sulation i tion or w with sola	ind pov	tion and ined, and wer

 City of San Diego, California, USA Solar Energy Implementation Plan <u>http://www.sandiego.gov/environmental-</u> <u>services/pdf/sustainable/SolarImplementationPlan-May2010.pdf</u>


• Santiago, Chile – the precinct the APEC study group visited had solar lighting for a bicycle track.

(14) Solar Heating & Cooling

Demand/	on of Measures		Low-carbon Measure	Applicat Town	as as	perty	
	Major	Minor		I	II	III	IV
Supply	Classification	Classification					
Supply	Renewable		Using solar	М	Μ	м	м
	energy		heat				
		verview of Meas		-			• •
•	the natural energy	-		•	oling/ he	ating m	akes it
-	e to promote energ			-			
	eat can be utilised					\ /	
-	proving performance			-			
	ermal system cost: d heat pumps.	s should be carel	ully compared v	vith alterna	auves su	ch as r	
powered	i neat pumps.	Expected CO	2-Reducing Eff	act			
Annual	gas consumption a	•	-		ut 30% I	y usin	n solar her
	on an average hou			•		•	-
,	ion for a solar hea				•	-	
50.00101							, . ,
		Examples	of Application				
A housir	ng complex in Kaw	vasaki, Japan					
	e building in Kuma	•					
	•	•••					
Solar the	ermal cooling syst	em at a hospital i	n Echuca, Victo	oria, Austra	lia		
	• •						

(15) Biomass Power Generation

Demand/ SupplyMajor ClassificationMinor ClassificationIIIIIIIVSupplyClassificationClassificationLLL/MMSupplyRenewable energyBiomass power generationBiogas injection into city gas combustionLLL/MM	Classification of Measures		Low-carbon Measure	Applicability as per Type of Town				
energy power injection generation into city gas		-	-		I	II	III	IV
	Supply		power	injection into city	L	L	L/M	Μ

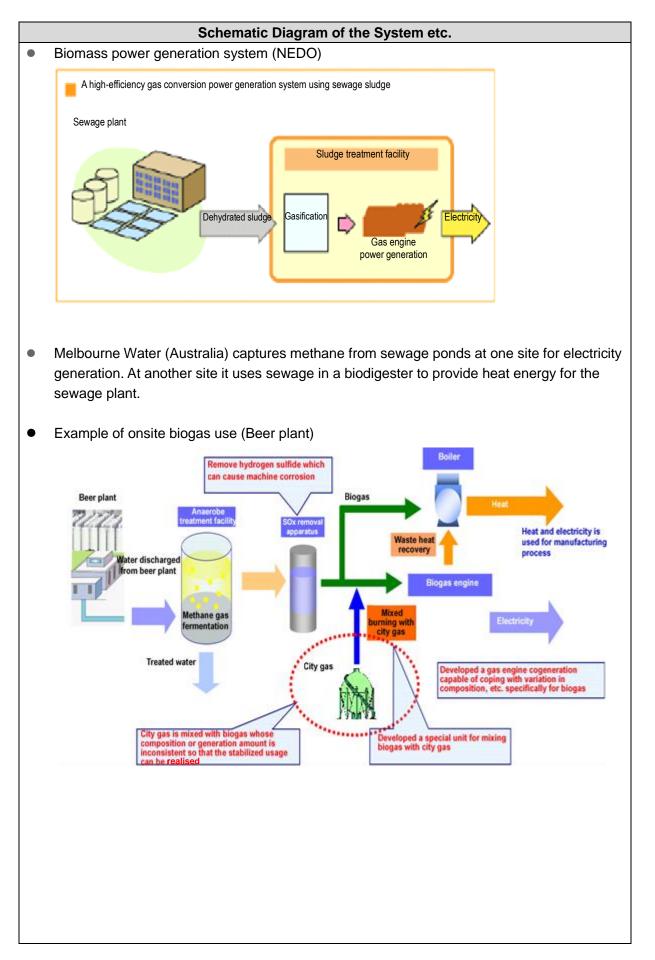
Overview of Measures and Applicability

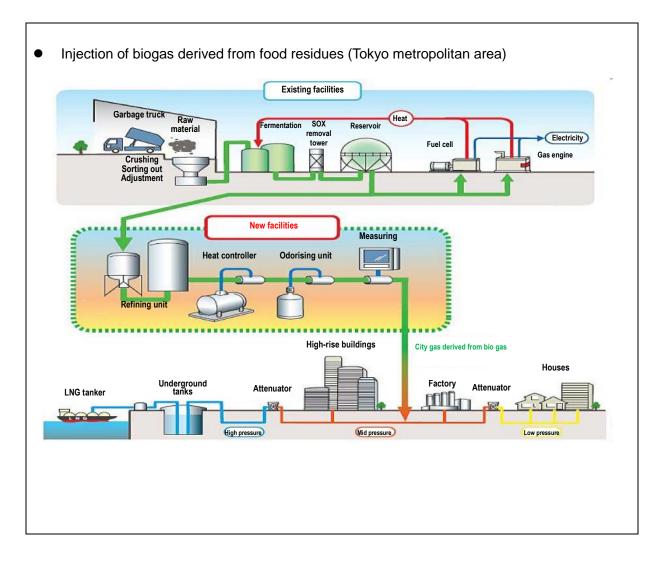
- Biomass power generation is a collective term for power generation technologies using biomasses (animal/plant resources and organic wastes from these resources) for direct incineration, heat decomposition, fermentation, etc. The form of biomass can be roughly classified into unused resources (forest resources, agricultural residues, etc.), waste resources (building materials, paper manufacturing materials, livestock manure, food residues, etc.) and production resources (pasture grass, water plant, vegetable oil, etc.).
- Suitable locations vary with the type of resources, because biomass needs stable supply. Where seasonal sources exist, storage of fuel or alternative biomass sources may be needed to ensure reliable generation.
- Excessive biogas generated from sewage sludge or food waste, etc. is put to an effective onsite use as the fuel for power generation or automobiles. If generated biogas or electricity still remains after onsite use, it would be possible to supply energy (biogas, co-generation power) to the outside.
- Not only these measures contribute to energy conservation and CO2 reduction, but they help make the best use of and recycle the local biogas resources, such as sewage sludge or kitchen garbage, for a long-term and in a stable manner.

Expected CO₂-Reducing Effect

- CO₂ will be reduced through renewable power generation.
- Where biomass energy use avoids anaerobic decay and leakage of very greenhouse-active methane into the atmosphere, there are large additional emission benefits from avoiding the leakage of methane.
- (Example) Injection of biogas into city gas conduits: Approx. 1,830 tons/year
- (outlined in below: case example of Tokyo metropolitan area)

Examples of Application


• Example of Biomass Power Generation (recycling of food residue)

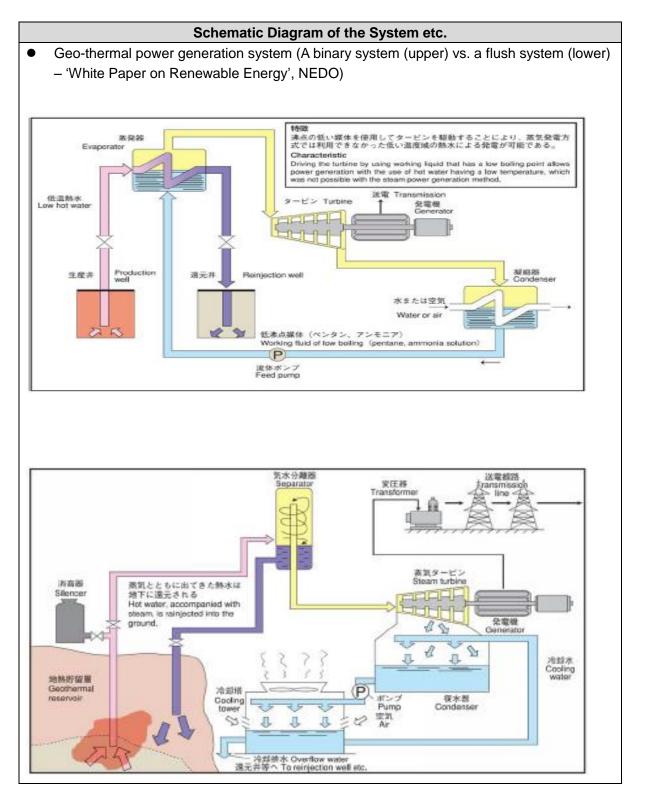

Recycling plant of Shochu (Japanese Spirit) lees, Kirishima Shuzo, Co., Ltd. Location: Miyakonojo City, Miyazaki Prefecture, Japan Processing Objects: Shochu lees 800t/day, Sweet potato pulp 10t/day, Factory waste water 10t/day, Dehydrated cake 60t/day Power Generation Output: 1,905kW

Type of Power Generation: Gas engine

- Biogas generation: Tokyo metropolitan area, Yokohama City, etc. (About 30 sewage treatment facilities, etc.), Japan
- Biogas automobiles: Kobe City and Ueda City, Japan
- Injection of biogas into city gas conduits: Kobe City and Tokyo metropolitan area, Japan

(16) Geothermal Power Generation

Classifica	tion of Measures		Low-carbon	A	Applicability as per		
			Measure	Ту	pe of T	Town	
Demand/	Major	Minor		I	II	III	IV
Supply	Classification	Classification					
Supply	Renewable		Geo-thermal	X	L	L	М
	energy		power				
			generation				
	Ov	erview of Measu	res and Applica	bility			


- Geo-thermal power generation is a collective term for power generation using geo-thermal energy. There are two different systems to convert thermal energy into electrical energy via steam turbines: a flash and binary system.
- Compared with other renewable energy generation systems, this system has an advantage in terms of energy stability, but it is necessary to take account of environmental risks (air pollution caused by releases of hydrogen sulphide, etc.).
- The regions where this system can be applied are limited to those that can meet the criteria, namely, a specified amount of geo-thermal energy resources existing underground that can be developed at a reasonable cost.

Expected CO₂-Reducing Effect

• It is expected that CO₂ will be reduced by means of using clean energy for electricity/heat generation in the relevant communities.

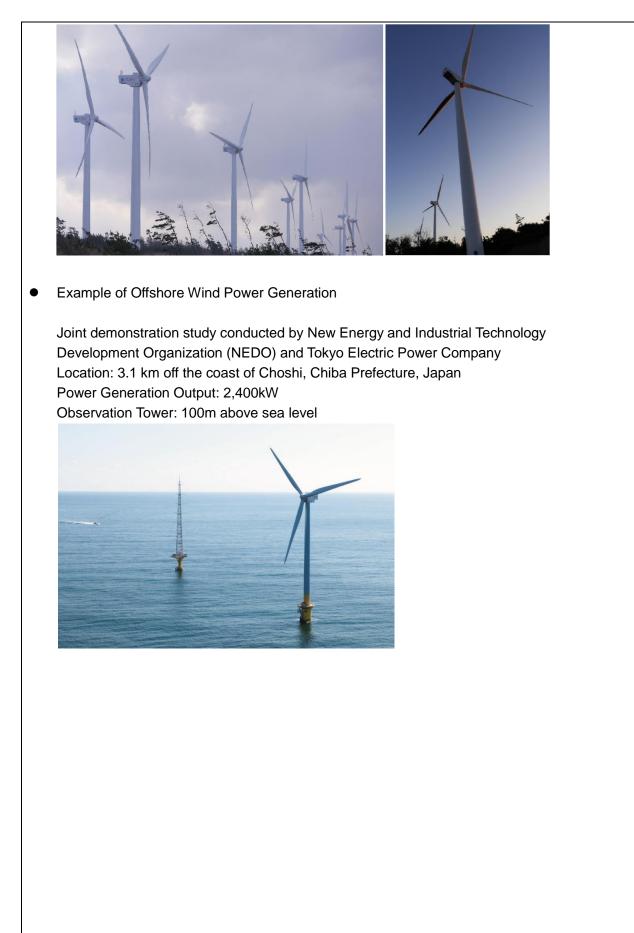
Examples of Application

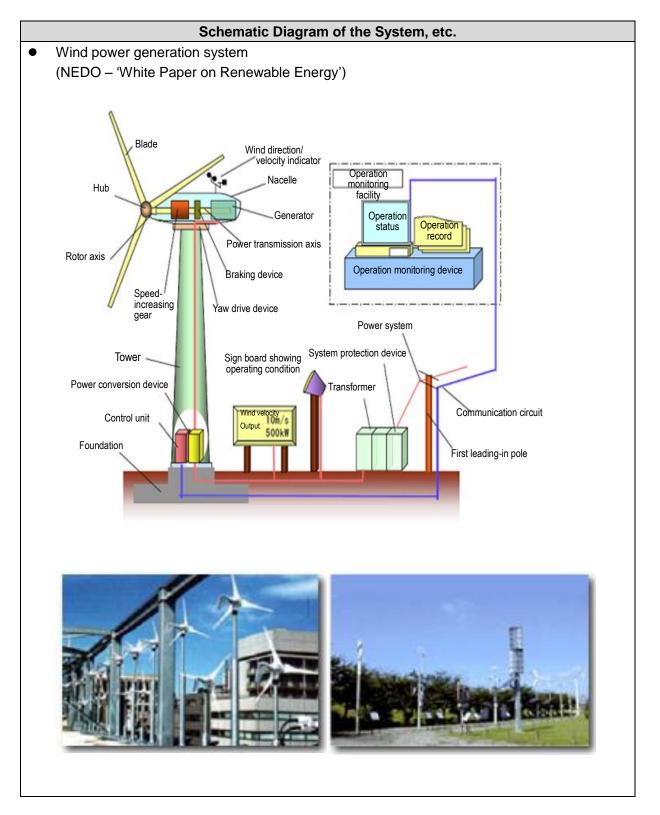
- The Lahendong geothermal power plant, which is located 30km south of Manado, in North Sulawesi, Indonesia, supplies almost 40% of the electricity demand in Manado. It comprises four 20MW units utilising a flush system. At present, the demonstration project (550kW) is now ongoing at Lahendong in order to show the viability of binary technology, which utilises lower-temperature liquid phase from a high-temperature wet stream.
- Indonesia, Philippines, New Zealand and USA are the top four geothermal electricity producers.
- In areas off grids, where expensive diesel fuel is used for generation, lower-temperature geothermal heat (e.g. from hot aquifers providing water supply) can be used to produce electricity using the Organic Rankine Cycle and other emerging technologies. These units can also use waste heat from a diesel generator to produce electricity.

(17) Wind Power Generation

Classification of Measures		Low-carbon Measure	-	Applicability as per Type of Town				
Demand/ Supply	Major Classification	Minor Classification		I	II	III	IV	
Supply	Renewable energy		Wind power generation	L	L	L	М	
	Overview of Measures and Applicability							

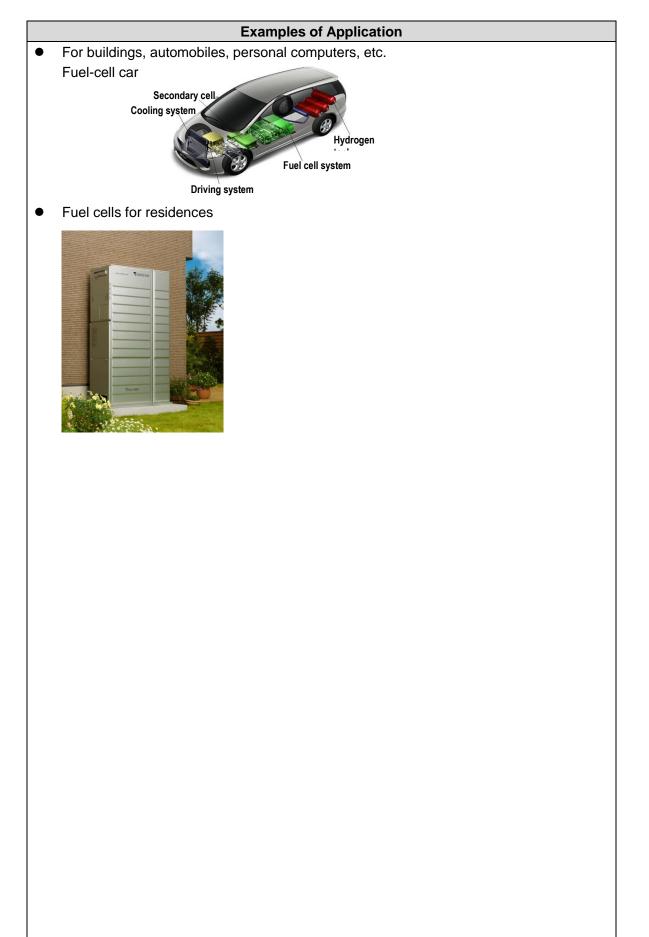
- Wind power generation is a collective term for technologies used to generate electricity by means of capturing wind energy with rotor blades and transferring the rotational energy to generators. This power generating system has various types depending on the structure of blades and size, but it can be roughly classified into large-scale wind power generation linked to the grid and mid- or small-scale wind power generation intended to be used within each region.
- Compared with other renewable energy generation systems, this system has an advantage in terms of low introduction cost per unit of electricity generated. On the other hand, it has a disadvantage of low energy efficiency in case of limited geographical conditions (dependent on wind conditions) or small-scale power generation.
- As wind energy (P) increases in proportion to the cube of wind velocity (V) (P = 1/2 ρ A v³), it is highly probable that this system can be applied in regions with favourable wind conditions. Local terrain features can concentrate wind, while small wind turbines can be installed on tall existing structures (subject to turbulence issues)
- While offshore wind generation is still expensive, costs are declining and the wind resources are often better.

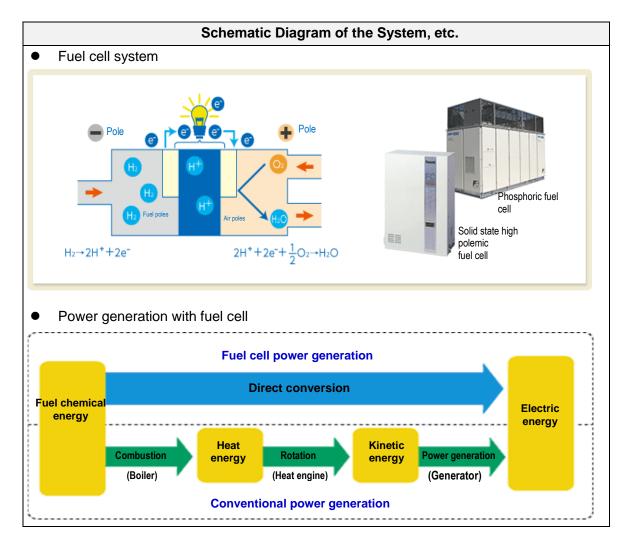

Expected CO₂ Reducing Effect


• It is expected that CO₂ will be reduced by means of using clean energy in electricity generation in the relevant communities.

Examples of Application

• Example of Onshore Wind Power Generation


Oga Wind Farm, Summit Energy Corporation Location: Oga City, Akita Prefecture, Japan Power Generation Output: 28,800kW



(18) Fuel Cell

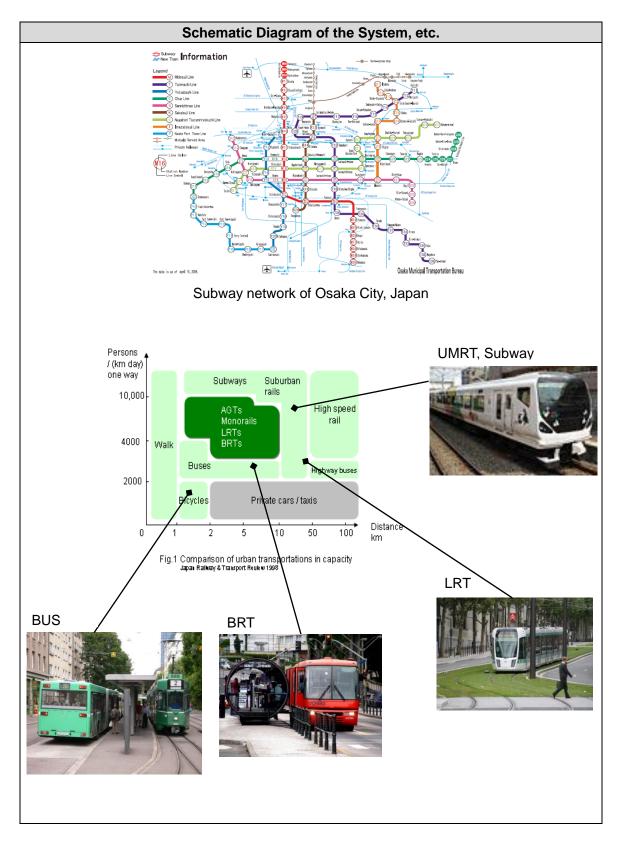
Measures	tion of		Low- carbon		olicabi e of T	ility as pe own	er
Demand/	Major	Minor	Measure	1			IV
Supply	Classification	Classification					
Demand	Buildings	Equipment	Fuel cell	н	Н	М	Μ
		installed					
		at facilities					
		rview of Measur					
	icity is generated b			•			
	air, while the heat c						
	ghly efficient powe	-		y is gene	rated of	directly fro	om
-	gen using an electr						
	ells can be used fo	or various uses ar	id systems wi	th differer	nt scal	es	
	W~200kW).					1.4	
	contributes to the	•	time power c	onsumpti	on and	a the	
impro	vement of energy s	ecurity.					
			//				
	ise power is genera	Expected CO ₂ F	-				
00000	-	ld of four people,		educed b		-	
In the energ	ar compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol	CO ₂ can be r stem (thermal chieve zero e ogy developn	educed b power ge missions nent in thi	enerati by usi s area	ion and b ng renew i is occurr	oiler). ⁄able ′ing
In the energ rapidl	ear compared to the long term, fuel cell y from generated h	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
In the energ rapidl	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing
 In the energ rapidly 	ear compared to the long term, fuel cell y from generated h y, as many see hyd	e conventional sys s will be able to a ydrogen. Technol lrogen as a key tr	CO ₂ can be r stem (thermal chieve zero e ogy developn ansportable fo	educed b power ge missions nent in thi prm of rer	enerati by usi s area newab	ion and b ng renew is occurr le energy	oiler). ⁄able ′ing

Classificat	ion of Measures		Low-carbon		Applicability as per			
			Measure		Туре о	of Tow	า	
Demand/	Major	Minor		I	II	III	IV	
Supply	Classification	Classification						
Demand	Transportation system	Public transportation systems	Well developed public transportation network	М	Μ	М	x	
	Over	view of Measures	s and Applicabilit	ty				

(19) Transportation (Establishment of Public Transportation Network)

• There are a variety of public transportation systems in cities. Typical transportation systems are subways, LRT (Light Rail Transport), BRT (Bus Rapid Transport) and route buses.

 By establishing a public transportation network that combines optimal public transportation systems based on the city size and the demand for transportation, lowcarbon urban life and sustainable cities must be realised through the use of public transportation with fewer CO₂ emissions.


- There is evidence that early provision of light or heavy rail or metro services encourages urban development along the routes that support lower dependence on cars. The perception of permanence of investment in PT infrastructure is important, as it reduces perceptions of investment risk for developers in comparison with provision of bus services, which can easily be removed or redirected by future policy decisions.
- Provision to securely store and carry bicycles, wheelchairs and mobility scooters can be important ways of increasing utilisation of PT systems. Emerging small personal electric scooters, skateboards and other easily carried local transport personal vehicles will also enhance the viability of PT systems for a wider catchment of users.

Expected CO₂-Reducing Effect

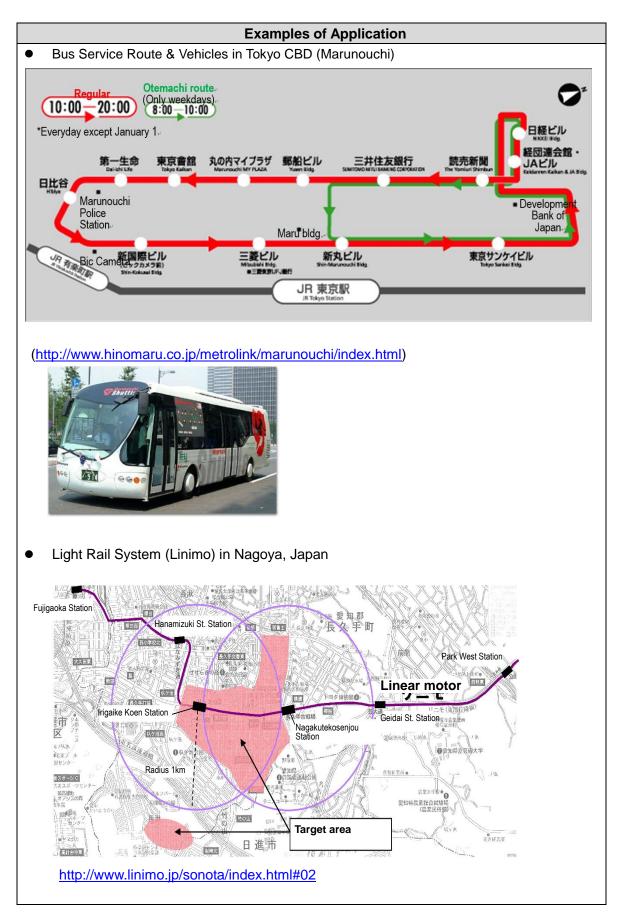
- As people use public transportation systems, which emit less CO₂ than automobiles, its development contributes to curbing the amount of CO₂ emissions in cities.
- Electrified PT is easily shifted to renewable energy, simply by producing renewable electricity for the grid that serves it. Conversion of diesel or gas-fuelled PT is more difficult, although hybrid and electric buses are emerging.

Examples of Application

• There are a number of examples of well-developed public transportation networks in cities in the APEC region.

Classificat	tion of Measures		Low-carbon		App	licab	ilit
			Measure		y as	per	
					Туре	e of	
					Tow	n	
Demand/	Major	Minor		T	П	Ш	IV
Supply	Classification	Classification					
Demand	Transportation	Public	Intra-district	Н	Н	Η	Г
	system	transportation	transportation				
		system (Bus,	system				
		LRT)					

(20) Local Transportation System (Bus, LRT, etc.)

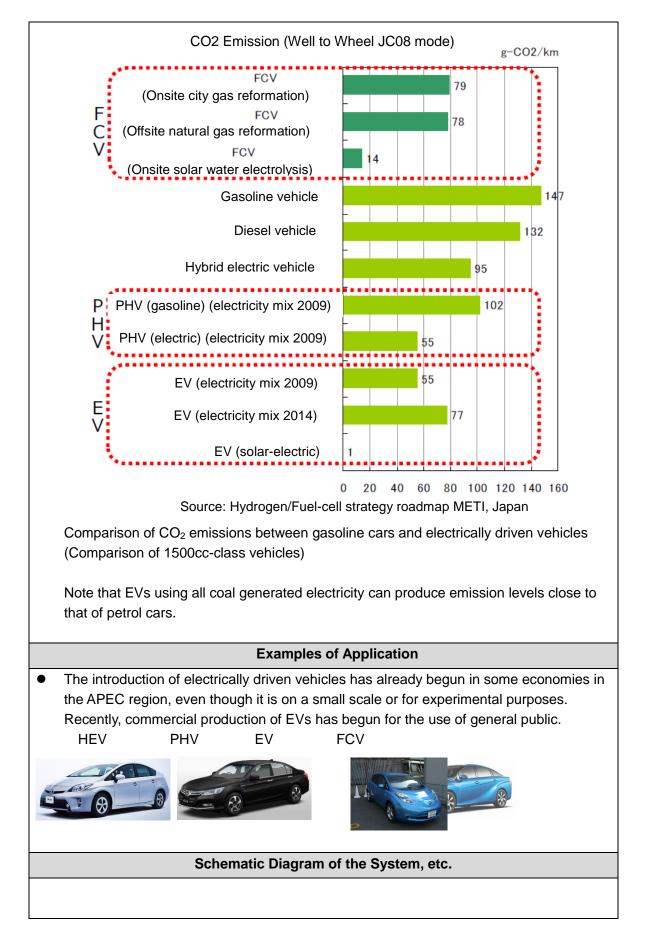

	Overview of Measures and Applicability
•	The LRT, BRT and buses are the public transportation systems that offer services in a
	part of city area, such as the CBD (Central Business District). The establishment of
	those systems would serve to improve convenience for the people who travel in the
	area.
•	Although the carrying capacity is smaller than that of mass transportation systems, such

as subways, they can be established with less cost and the distance between stops can be shorter than that in subways.
Note points made previously about complementing these PT modes with supplementary

personal transport to expand the catchment area of potential users.

Expected CO₂-Reducing Effect

 As traveling by local public transportation becomes more convenient, people begin to use public transportation systems that emit less CO₂ than cars. Therefore, these measures are effective in curbing the amount of CO₂ emissions from inside cities.



(21) Electrically Driven Vehicle

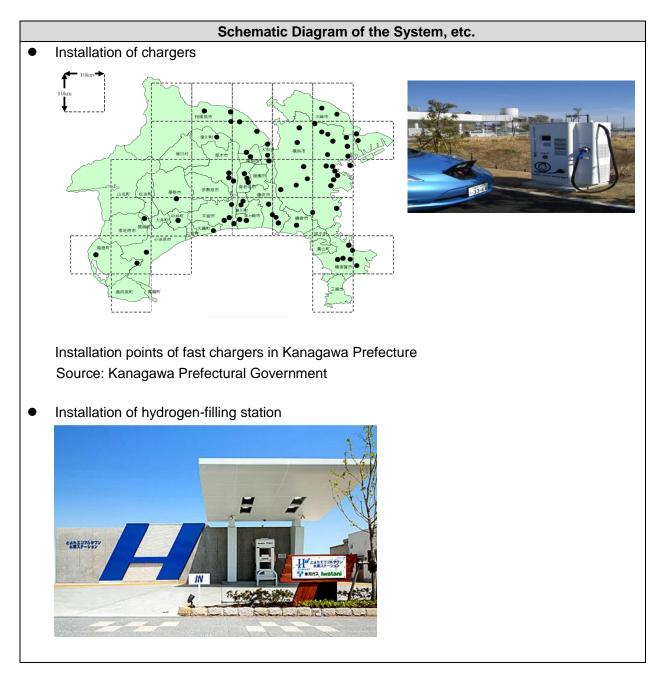
Classificati	on of Measures		Low-carbon Measure	Applicability as per Type of Town					
Demand/	Major	Minor		I	Ш	ш	IV		
Supply	Classification	Classification							
Demand	Transportation	Vehicles	Electrically	М	Μ	Μ	Μ		
	system		driven						
			vehicle						
			(EV, HEV,						
			PHV, FCV)						
	Overv	iew of Measure	s and Applical	oility					
• The wid	le use of electrically	driven vehicles	will be promote	d throug	gh impr	oving th	ne		
environ	ment for their usage	e, such as install	ing chargers an	d enhar	ncing pu	ublic rel	ations		
activity	for the electrically d	riven vehicle env	vironmental per	formanc	e over	conven	tional		
cars.									
		Expected CO ₂ -	Reducing Effe	ct					
Electric	ally driven vehicles	do not run on fo	ssil fuels, such	as gaso	line, un	like exi	sting		
automo	biles. They are also	more efficient, a	and therefore, th	ney serv	e to rec	duce the	е		
amount	of CO ₂ emissions a	and local air pollu	ution from traffic						
 A		1				a			

• A wide variety of electric vehicles, including e-bikes, mobility scooters for the disabled and elderly, electric skateboards and Segways, are emerging. These allow young, old and those without driving licenses to be independently mobile. This reduces the number of 'chauffeuring' trips in cars. For example, in Sydney Australia in 2011, 22% of weekday car trips were to take a passenger to a destination to which the driver did not want to go.

(22) Infrastructure for Electrically Driven Vehicle

Classification of Measures		Low-carbon Measure	Applicability as pe Type of Town			per	
Demand/ Supply	Major Classification	Minor Classification		Ι	II	III	IV
Demand	Transportation system	Infrastructure for electrically driven vehicles	Charger, Hydrogen filling station	М	Μ	M	М

• Chargers for electric vehicles will be installed taking their usage scenes and driving ranges into account.


- The introduction of chargers and hydrogen filling stations will be promoted by grasping business opportunities, such as city redevelopment projects.
- At the same time, battery technology is improving, so that EVs have longer ranges and are less dependent on charging stations. In the midterm, charging stations may also be used to send excess electricity generated at off-grid buildings into the grid via an EV.

Expected CO₂-Reducing Effect

- Compared to gasoline cars, the driving range of EVs is limited (approximately 160km with one full-charge, but increasing, e.g. Tesla has up to 400 km range), which exerts a significant influence on the sales of EVs. As chargers spread, the diffusion of EV will be boosted, which will, in turn, contribute to the reduction of CO₂ emissions from traffic.
- Hydrogen-filling stations also will boost the diffusion of FCVs.

Examples of Application

• Installation has already started at parking lots, gasoline stations, shopping malls, etc.

(23) Community Cycle Sharing

Classificati	on of Measures		Low-carbon	Applicability as per				
			Measure	Type of Town				
Demand/	Major	Minor		I	П	III	IV	
Supply	Classification	Classification						
Demand	Transportation system	Public transportation systems	Community cycle Sharing	Η	Н	Н	L	
	Over	view of Measure	s and Applicab	oility				

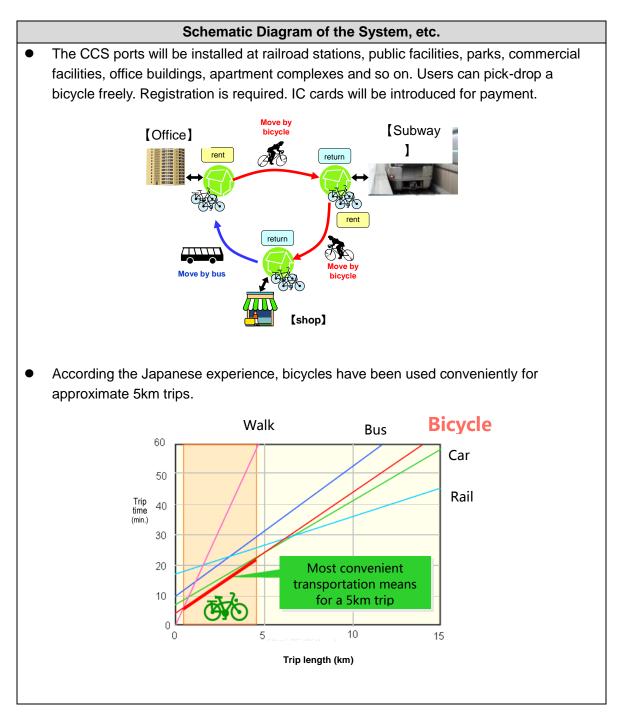
- The community cycle or bike-sharing (hereinafter, the CCS) refers to a system of sharing bicycles where users can pick-drop a bicycle at their convenience. This system aims to increase the use of bicycles as an alternative to cars and address the problems of illegally parked or abandoned bicycles.
- By installing CCS ports around railroad stations and public facilities, this system is expected to take effects to compensate for the unavailability of public transportation infrastructure and to improve accessibility.
- Where bicycle helmets are mandatory (e.g. Australia), operation of CCS can be difficult.

Expected CO₂-Reducing Effect

 With respect to the NUBIJA (the CCS of Changwon city, Korea), about 45% of users in their 30s and older have reportedly switched from cars to bicycles for commuting after one year of the CCS introduction (source: NUBIJA HP). The appropriately introduced CCS will prompt people to switch from automobiles to bicycles, and it is expected to take effect in reducing CO₂ emissions in the transportation sector.

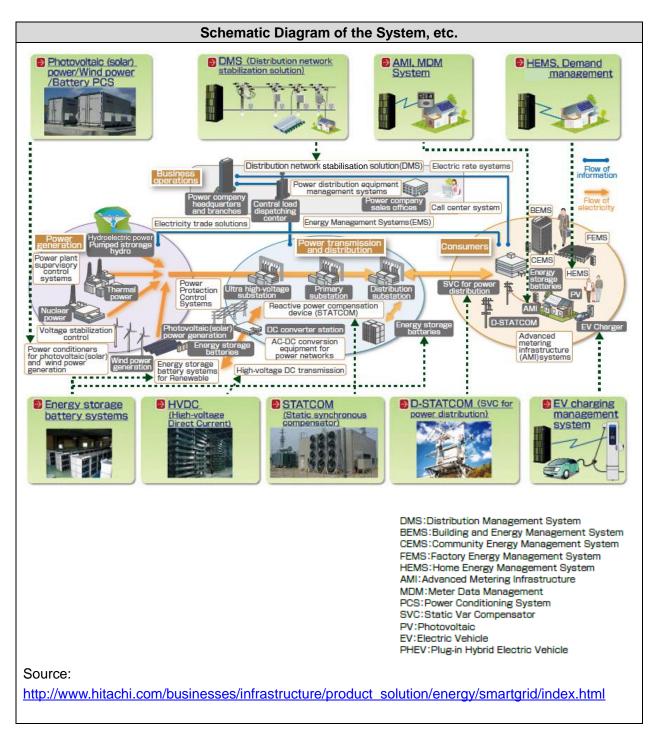
Examples of Application

• There are a number of examples of CCS in cities in the APEC region.



Yokohama City (Japan)

Toyama City (Japan)



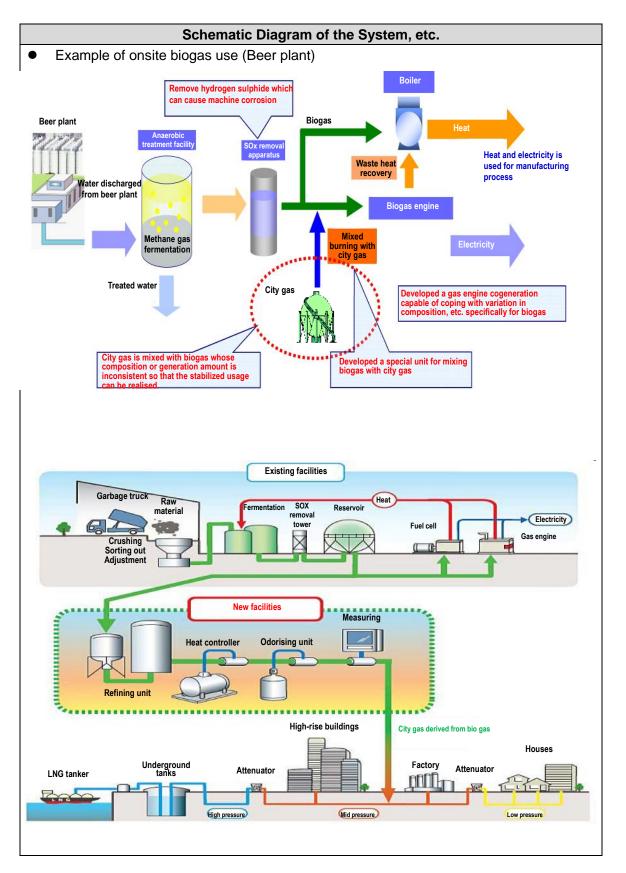
Taipei

(24) Smart Grid

	n of Measures		Low-carbon Measure		cabilit of Tov		ber
Demand/	Major	Minor		1			IV
Supply	Classification	Classification					
Demand	Smart grid	Electric power	Smart grid	н	н	н	н
and Supply	system and	system	system				
	others						
		view of Measures a					
	e 1	ext-generation powe	0		•		
		sing the latest inform	•				
	•	d generation, balanci	•				1
		er diversify due to the of information/comn			-		
•	-	of smart grids. Thes				-	
•	•	ture and grid stabiliz				•••	
	•	nstable renewable ei	0 0,	niguto		Jganv	
inputto	r the grid, eden de d						
		Expected CO ₂ -Redu	cing Effect				
	on of the use of the	renewable energy so	-	ted pov	ver su	pply th	nroug
	m stabilization contr						_
Reductio	n of the overall emis	sions of CO ₂ from el	ectric power gener	ation.			
		Examples of App	lication				
Kashiwa-	no-ha Smart City, C						
 Woking, 							
0,							

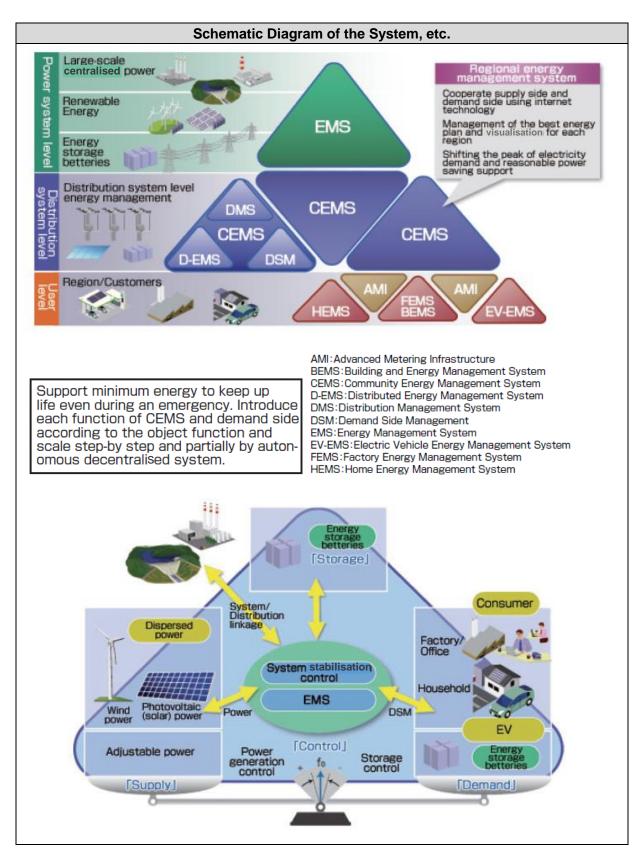
(25) Garbage

Classificati	on of Measures		Low-carbon	A	pplicat	oility as	s per
			Measure	Т	ype of T	Town	
Demand/	Major	Minor		I	Ш	III	IV
Supply	Classification	Classification					
Supply	Renewable	Biomass	Biogas				
	energy	power	injection into				
		generation	city gas				
			combustion				
	Ove	rview of Measu	res and Applicab	oility			


- Excessive biogas generated from sewage sludge or food waste is put to an effective onsite use as the fuel for power generation or automobiles. If generated biogas or electricity still remains after onsite use, it would be possible to supply energy (biogas, co-generation power) to the outside.
- These measures not only contribute to energy conservation and CO₂ reduction, but they help make the best use of and recycle local biogas resources, such as sewage sludge or kitchen garbage, for a long-term and in a stable manner.

Expected CO₂-Reducing Effect

- CO₂ can be drastically reduced by using carbon-neutral biogas.
- Avoiding leakage of climate-active methane into the atmosphere offers large emission reduction benefits, as methane is around 25 times as climate-active as the same mass of CO2.
- (Example) Injection of biogas into city gas conduits: Approx. 1,830 tons/year
- (outlined in below: case example of Tokyo metropolitan area)


Examples of Application

- Biogas generation: Tokyo metropolitan area, Yokohama City, etc. (about 30 sewage treatment facilities, etc.), Japan
- Biogas automobiles: Kobe City, Ueda City, Japan
- Injection of biogas into city gas conduits: Kobe City, Tokyo metropolitan area, Japan

(25) Community Energy Management System

	on of Measures		Low-carbon			lity as	s per
D		RA ¹ -1 - 1	Measure		e of To	1	
Demand/	Major	Minor			II		IV
Supply	Classification	Classification	0	·		1	1
Demand	Energy	Area energy	Community	н	Н	н	н
and	management	management	energy				
Supply	system	system	management				
			system (CEMS)				
.			es and Applicability				
•••	• •		decentralized architect	ure.			
		nanagement utilisir	-				(atom
	• • •		distribution level energy		-	-	
	,	o distribution mana	agement system (DMS)	เอินแ	lise re	enewa	Jie
	ergy.	iding various carvi	and according to the up		ituatia	n and	
	, ,	•	ces according to the us	0			and
		•	n with demand (such a				
ΠE	ivio) and provision	i oi suppiy and der	nand forecasts and pov	ver sa	ving li		10011.
		Expected CO ₂ F	Poducing Effect				
Doduct	on of CO omiosis	•	nood through improved	onora	Vector	ingo	
		•	•	-	-	-	
 Reducti 	on of CO_2 emis	sions nom the t	concentrated power s	uppiv	unou	ign u	ie iola
	tion of an army con					•	
optimis	ation of energy co	nsumption and ger	neration in a neighbourh			0	
optimis	ation of energy co						
optimis	ation of energy co	nsumption and ger Examples of					
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						
optimis	ation of energy co						

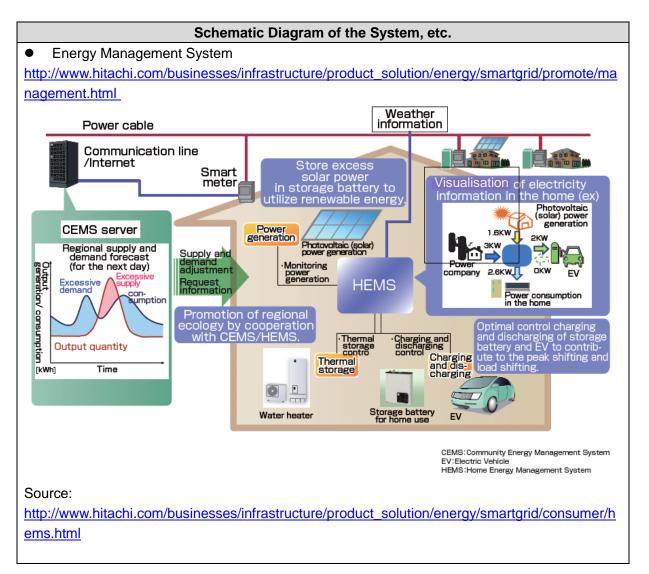
Supply	Traditional power generation such as thermal power and renewable energy (such as photovoltaic (solar) and wind power)	
Demand	Home consumers, large scale consum- ers, such as factories and offices, and EV charging stations which are expected to increase in the future	
Storage	The function to mitigate the fluc- tuation of electricity demand and power output by the energy storage equipments such as storage of electricity and thermal energy.	
Control	The whole optimization function by coordinating above three factors with grid stabilizing control, generation control, DSM and power supply control.	

Source:

http://www.hitachi.com/businesses/infrastructure/product_solution/energy/smartgrid/promote/ma nagement.html

(26) Home Energy Management System

Classificati	on of Measures		Low-carbon	Арр	licabi	lity as	per
			Measure	Туре	e of To	own	
Demand/	Major	Minor		1	Ш	III	IV
Supply	Classification	Classification					
Demand	Energy	Area energy	Home	Н	Н	Н	Н
and	management	management	energy				
supply	System	system	management				
			system (HEMS)				
	0\	verview of Measu	res and Applicability				


• Utilise renewable energy, such as photovoltaic (solar) power, effectively by controlling load equipment in the home, such as water heaters, storage batteries and EVs.

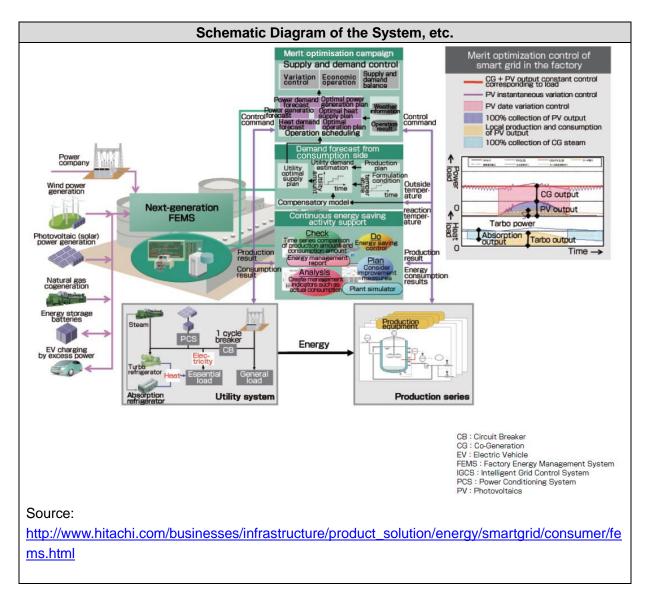
- Contribute to reducing the regional environment impact by cooperating with community energy management system (CEMS).
- HEMS utilises renewable energy effectively by visualising load equipment information in the home (such as water heater, storage battery and EV) and controlling it properly.
- HEMS contributes to the reasonable peak shifting and load shifting according to the information of supply and demand arrangement request from community energy CEMS.
- Calculates necessary power quantity from demand forecast and output forecast of photovoltaic, and stores in storage batteries and EVs in advance to contribute to maintain minimum energy life in an emergency.
- These systems should be combined with high-efficiency appliances and equipment technologies, such as LED lighting, heat-pump hot water and space conditioning, and high-efficiency TVs, to optimise costs and emission reduction.

Expected CO₂-Reducing Effect

• Optimise home energy use.

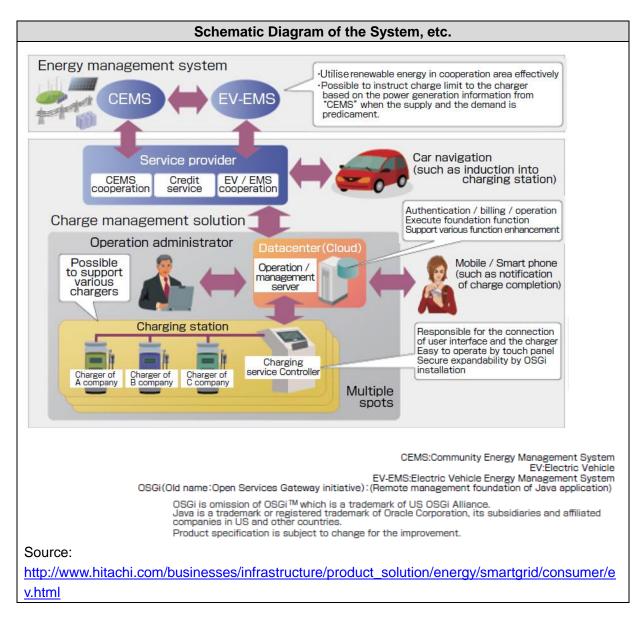
Examples of Application

(27) Factory Energy Management System

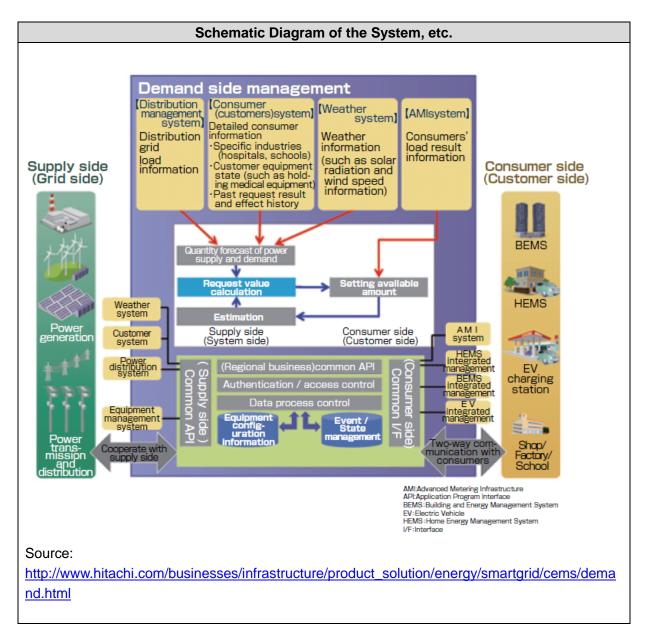

Classificat	ion of Measures		Low-carbon	App	licabi	lity as	per
			Measure	Туре	e of To	wn	
Demand/	Major	Minor		1	II	III	IV
Supply	Classification	Classification					
Demand	Energy	Area energy	Factory	Н	Н	н	Н
and	management	management	energy				
supply	system	system	management				
			system (FEMS)				
	Ov	verview of Measur	es and Applicability				
Next-ge	eneration energy n	nanagement syste	m that maximizes the a	advanta	age of	disper	rsion

- cogeneration systems with renewable energy and natural gas energy by managing and controlling both energy supply and consumption in the factory.
- Forecasts variable renewable energy output, power demand and heat demand to realise supply-energy cost reduction and supply stabilisation.
- Realises the improvement in accurate energy demand forecasts by adding production results, production plans and formulation conditions.
- Supports continuous energy saving activity by PDCA cycle and visualising consumption.
- These systems can complement onsite energy recovery, energy-efficiency measures and interaction with neighbouring businesses and the grid.

Expected CO₂-Reducing Effect


• Optimise factory energy use.

Examples of Application


(28) EV Charging Management Solution

Classifica	tion of Measures		Low-carbon Measure		icabil of To	-	per
Demand/	Major	Minor	WedSule	Туре			IV
Supply	Classification	Classification		•	••		
Demand	Management	Energy	EV charging	н	н	н	н
		management	management				
		system	solution				
	0	verview of Measu	ires and Applica	bility			4
Provid	les a set of foundat	ion functions, suc	h as user				
authe	ntication/billing/settl	ement/monitoring	and log collectio	n, whi	ch are	nece	ssary to
opera	te EV chargers as a	a necessary servio	ce of EV-charging	g infras	structu	ire.	
Realis	ses EV charging ma	nagement with th	e consideration o	of regio	onal ch	nargin	g station
coope	erating with the ener	gy management	system.				
Charge	ing management se	olution:					
> L	arge screen touch p	panel type service	e controller perfor	ms ba	tch pro	ocessi	ing of user
0	peration.						
> P	ossible to respond	to card settlemen	t, car navigation,	mobile	e phor	ie, inte	egration with
С	harger of other mak	er and shop system	em cooperation b	у соор	peratin	g with	ו
0	peration/manageme	ent server.					
	dopt OSGi framewo						
е	quipment and JAVA	A middleware env	ironment of which	n funct	ions c	an be	expanded.
-	eration with CEMS						
	nable preferential g		•••				
е	nvironment impact	by prioritizing effe	ctive time zone fo	or rene	ewable	e ener	gy.
		Expected CO ₂	-Reducing Effec	t			
Redu	ction of CO ₂ by intr	•	-		depen	ds on	the number o
	eplacing conventior	•					
	ination of EV mana	•		CEMS	furthe	r optir	mise the use o
	city, which, in turn,	•				•	
		-	of Application				
	system in Malaga, S	•					
	system in Hawaii, U						
 Pilot s 	system in Okinawa,	Japan					

(29) Demand Side Management

Supply () Demand () Demand () Image: state of the state of th	e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power s ising current supply of ower saving and rece s. o provide various ser ng state.	including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti	S) to provide supply s of issues, feeds supply reliability, a ak shifting by prov ms. d plan and the po- nand results and v ime of power usin ring incentive acc	viding v wer de weathe	H H d der o use timis vario emar er infu	H H mand f ers, co sing er ous ser nd of th ormati	rrection nergy rvices ne next fon. time to
Supply 0 Demand 1 Demand 1 Image: Supply and the second	Classification Smart grid system (mainly for electric power system) Overvie e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power se ising current supply of ower saving and records. o provide various ser ng state.	Classification Network wof Measures and and (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti vices such as offe	management nd Applicability S) to provide supply s of issues, feedly supply reliability, a ak shifting by provention and results and vector ime of power using ring incentive according and results and vector and	ply and pack to and op viding v wer de weathe	H d der o use timis vario vario emar er infu	H mand f ers, co sing er ous ser nd of th ormati	H forecasts rrection nergy rvices ne next ion. time to
 Coordinate and power of problem exports. Realise the according f Forecast p day by utili Request pe consumers Possible to power usin 	Smart grid system (mainly for electric power system) Overvie e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power se ising current supply of ower saving and rece s. o provide various ser ng state.	Network w of Measures and and (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti vices such as offe	management nd Applicability S) to provide supply s of issues, feedly supply reliability, a ak shifting by provention and results and vector ime of power using ring incentive according and results and vector and	ply and pack to and op viding v wer de weathe	d der o use timis vario emar er infi	mand f ers, co sing er ous ser nd of th ormati	forecasts rrection nergy rvices ne next fon. time to
 Coordinate and power of problem exports. Realise the according f Forecast p day by utili Request per consumers Possible to power using 	system (mainly for electric power system) Overvie e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power si ising current supply of ower saving and records. o provide various ser ng state.	w of Measures and ind (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti	management nd Applicability S) to provide supply s of issues, feedly supply reliability, a ak shifting by provention and results and vector ime of power using ring incentive according and results and vector and	ply and pack to and op viding v wer de weathe	d der o use timis vario emar er infi	mand f ers, co sing er ous ser nd of th ormati	forecasts rrection nergy rvices ne next fon. time to
 Coordinate and power of problem exports. Realise the according for according for the sequest period consumers Possible to power using 	for electric power system) Overvie e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power se ising current supply of ower saving and rece s. o provide various ser ng state.	ind (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti	nd Applicability S) to provide supply s of issues, feed supply reliability, a ak shifting by prov ms. d plan and the por hand results and v ime of power usin ring incentive acc	viding v wer de weathe	vario emar er inf ut of	ers, co sing er ous ser nd of th ormati peak	rrection nergy rvices ne next fon. time to
 Coordinate and power of problem exports. Realise the according f Forecast p day by utili Request per consumers Possible to power using 	system) Overvie e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power si ising current supply of ower saving and rece s. o provide various ser ng state.	ind (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti	S) to provide supply s of issues, feeds supply reliability, a ak shifting by prov ms. d plan and the po- nand results and v ime of power usin ring incentive acc	viding v wer de weathe	vario emar er inf ut of	ers, co sing er ous ser nd of th ormati peak	rrection nergy rvices ne next fon. time to
 Coordinate and power of problem exports. Realise the according for according for accordi	Overvie e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power s ising current supply of ower saving and reco s. o provide various ser ng state.	ind (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti	S) to provide supply s of issues, feeds supply reliability, a ak shifting by prov ms. d plan and the po- nand results and v ime of power usin ring incentive acc	viding v wer de weathe	vario emar er inf ut of	ers, co sing er ous ser nd of th ormati peak	rrection nergy rvices ne next fon. time to
 and power of problem exports. Realise the according Forecast p day by utili Request per consumers Possible to power using 	e the data with dema r saving information, ns, interaction with the e reasonable peak de to the usage situation precisely the power s ising current supply of ower saving and rece s. o provide various ser ng state.	ind (such as HEMS including diagnosi e grid for pricing, s ecreasing and pea n and contract terr upply and demand capacity, past dem ommend shifting ti	S) to provide supply s of issues, feeds supply reliability, a ak shifting by prov ms. d plan and the po- nand results and v ime of power usin ring incentive acc	viding v wer de weathe	vario emar er inf ut of	ers, co sing er ous ser nd of th ormati peak	rrection nergy rvices ne next fon. time to
 Contribute 	Exp	pected CO ₂ -Redu					
	e to the utilisation of r	enewable energy		ower s	savir	ng	
		Examples of App	lication				

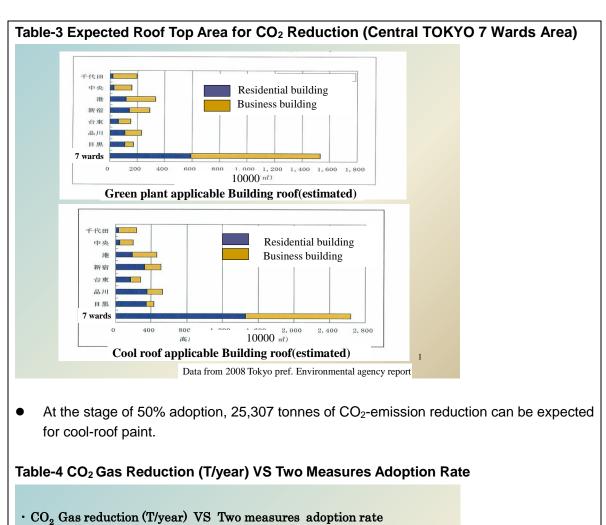
(30) Simulati	on Results for Co	U₂ Emission Redi	lction (Central	TOKTO	/ ward	s Area)	
Classificati	on of Measures		Low-carbon	Applica	bility a	s per	
			Measure	Type of	Town		
Demand/	Major	Minor		1	П	Ш	IV
Supply	Classification	Classification					
Demand	Building	Low-carbon	Reducing				
		building	heat loads				
	Over	view of Measures	s and Applicab	ility			

(30) Simulation Results for CO₂ Emission Reduction (Central TOKYO 7 Wards Area)

• Tokyo Prefecture Environmental Agency made a 2-year demonstration project from 2007 to 2008 estimating the CO₂-emission reduction when the building roof top was covered by green planting or cool-roof paint.

- The CO₂ emission reduction weights (kg –CO₂/year m²) for green planting or cool-roof paint were investigated for specific buildings preceded by the demonstration project.
- CO_2 emission rate (kg – CO_2 /year m²) were estimated as Table-1.

Expected CO₂-Reducing Effect


Table-1 CO₂.Emission Reduction (kg –CO₂/year \cdot m²)

Type of roof top	CO ₂₋ emission reduction	CO2-emission reduction
		(Life cycle cost added)
Green planting	5.218	4.167
Cool-roof paint	1.919	1.873

Insulation thickness 25mm

Table-2 CO₂ Emission Reduction in 2-years Demonstration Project

Type of roof top	Constructed area m ²	CO ₂ -emission reduction	Tone-CO ₂ / year
Green planting	6,458.8		33.7
Cool-roof paint	29,175.1		56.0

Adoption rate Method	Trial period (%) 0.04 0.11	3%	10%	309	%	50%		
Green planting Roof	33.7	2,395	7,983	23,9	48	39,913		
Coolroof paint 56.0 1,518 5,061 1,5184 25,307								
t / year (-CO ₂)								
Data from 2008 Tokyo pref. Environmental agency report								
		Exa	amples of	Applic	atio	n		
	Central TOKYO 7 wards area (Chiyoda-ku, Chuo-ku, Minato-ku, Shinjuku-ku, Ta Shinagawa-ku, and Meguro-ku), Japan							

Schematic Diagram of the System, etc.

APEC Project: EWG 01 2015A APEC Low-Carbon Model Town (LCMT) Project - Phase 6

Produced by APEC Low-Carbon Model Town Task Force

Katsushi Takehiro Ministry of Economy, Trade and Industry, Japan

Asia Pacific Energy Research Centre Inui Building, Kachidoki, 1-13-1, Kachidoki, Chuo-ku, Tokyo, 104-0054, Japan Phone: (+81) 3-5144-8551 E-mail: master@aperc.ieej.or Website: http://aperc.ieej.or.jp

For

Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace, Singapore 119616 Phone: (65) 6891-9600 E-mail: info@apec.org Website: http://www.apec.org

© 2016 APEC Secretariat

APEC#216-RE-01.27